IPBSM Operation

11th ATF2 Project Meeting

Jan. 14, 2011

SLAC National Accelerator Laboratory Menlo Park, California

- Y. Yamaguchi, M.Oroku, Jacqueline Yan
- T. Yamanaka, Y. Kamiya, T. Suehara,
- S. Komamiya (The University of Tokyo)
- T. Okugi, T. Terunuma, T. Tauchi, S. Araki, J. Urakawa (KEK)

layout

1. Laser wire scan

2. z-scan

3. reducer scan

4. laser phase stability

5. Gamma detector performance

6. run dependence of background

7. Methods on mode switching: $2-8^{\circ} \rightarrow 30^{\circ} \rightarrow 174^{\circ}$

1. laser wire mode

purpose

- signal detection
- Laser path alignment
- •beam size measurement
- Laser size measurement

2-8, 30 deg mode

Scan with mirror 1,2

174 deg mode

scan with mirror 5, 6

 Δx

Actuator shift Δa vs.

vs. laser shift at IP

$$\Delta x = C\Delta a$$

mode	C [μm/ μm]	
2 - 8	8.03	
30	9.64	
174	6.35	

2. z-scan

z-scan result

- Re-conducted scan in Dec run with same crossing angle, for confirmation
- Only need to scan once if laser position is stable

3. Reducer Scan

Adjust laser divergence angle

Enter convergence lens: divergence angle change

Laser size at IP change

reproducibility?? Depend on laser condition
Reproducible during cont. run, but need re-scanning after mode switching
because focusing lens differs between modes

4. Phase stability of interference fringe

• Jitter < 330 mrad for 1 minute measurement

– confirmed during contrast measurement (May, 2010)

Contrast measurement

Large interference fringe pitch, small beam size M nearly 1

Contrast ~ offset from ideal modulation

Measured contrast at 2.29 deg

$$\frac{M_{\text{meas.}}}{M_{\text{ideal}}} = 0.98 + 0.01 - 0.03$$

Phase jitter estimation

Bias factors affecting contrast measurement

- Power imbalance
- laser path misalignment
- spatial/temporal coherence
- interference fringe tilt
- Beam position jitter
- (interference fringe phase jitter

Determine **upper limit** assuming phase jitter to be the only bias factor

modulation depth degradation due to phase jitter

$$\frac{M_{\text{meas.}}}{M_{\text{ideal}}} = \exp\left(-\frac{\sigma_{\text{phase}}^2}{2}\right)$$

Combine with measured contrast to derive upper limit of σ_{phase}

6. Gamma detector signal BG separability

Signal fluctuation during Dec run

Simulation under different BG setting

BG: 100 GeV

Signal is too small!

Higher BG tolerable if signal > 50 GeV

BG levels: May and Dec

	Optics	Signal [GeV]	BG [GeV]	Beam Current [10 ⁹ e ⁻]
May, 2010	Beta x 10 optics	150	15	~ 4
Dec, 2010	nominal	15* - 60	100	~ 3

* After problem of unfocused laser

7. Laser crossing angle control

Laser crossing angle control

Rotating stage

Switch between 2-8, 30, 174 deg modes

Prism stage

Continuous change from 2 to 8 deg

Mode switching + re-alignment

After changing modes:

- transverse plane alignment by laser wire scan
- switching from 2-8 deg to 30 deg
 - Also need longitudinal direction scan
 - → z scan
 - transverse alignment alone cannot make ideal laser path
 - laser will not hit screen monitor
 - 30 deg path pass close to lens edge
 - → better to adjust inside shield remote control possible if align during weekend shut-down

summary

- Must re-align from beginning after mode switching
- If beam position is stable:
 Stable IP-BSM operation expected after alignment for each mode
- Transverse alignment needed if beam position changes
- S/N tolerable if laser is focused at IP

backup

4. Phase stability of Interference fringe

- Phase monitor not in use
 - Phase jitter at IP partially cancelled by lens effects
 - unseen with phase monitor
 - Phase monitor measured 790 mrad jitter
 much over-evaluated
- Jitter < 330 mrad confirmed during 2010 May's contrast measurement

Lens cancel phase jitter

- 1. Plane wave gather at focal point after entering lens
- optical path length to focal point is equal from any point on wave plane
- 2. Extract path1 and path 2 from plane wave
- assume path 2 is jittering (in position) compared to path 1
- no phase difference since optical length is same for both paths

Path length difference due to laser position changes before half mirrors are same for both paths → do not contribute to phase jitter

However path length difference between half mirror and lens does contribute

Contrast measurement

Interference fringe at IP can only be measured with beam

- (1) Laser power too strong, cannot use CCD
- (2) Fringe felt by beam (rest frame) is different from lab fram Biggest fringe pitch 2 deg + much smaller beam size Ideal M $|\cos\theta| = 0.9994$

Measured result is less due to modulation degradation factor

The measured M is fringe contrast felt by beam

2010: measured beamsize@8 deg: 380 nm (actually smaller; there is error for 8 deg also)

Measure contrast at 2.29 deg

Ideal: M >
$$\exp(-2k_y^2\sigma_y^2)|\cos\theta| = 0.983$$

Actual:
$$M = 0.96 \pm 0.01$$

$$\frac{M_{\text{meas.}}}{M_{\text{ideal}}} = 0.98 + 0.01 - 0.03$$

Phase monitor

Cut intensity \rightarrow expand with lens (must be smaller than pixel size d)

- → form laser interference on 1D CMOS image sensor (downstream from IP)
- → Fourier transf. image
- simultaneous with beam size measurement
- Correct beam size result with measured phase jitter??
- Phase jitter contribute to relative laser beam position jitter and signal fluctuation

Phase monitor over-evaluation

1 min measurement: 790 mrad (400 mrad with old laser)

→ 73% degradation

However modulation degradation factor (from contrast meas.) ~ 98% Only 200 (330) mrad even if all degradation only come from phase jitter

Cancellation effect of lens

2 paths from same plane wave entering lens

Gather at single focal point → no phase difference

No lens:

Assume jitter before entering half mirror (dotted line)

Path 2 has larger phase than solid line (no jitter)

Angle jitter is cancelled in same way as position jitter

Phase monitor: Fourier transf.

Cut noise of all frequencies

xj: jth pixel coordinate

image sensor signal:

$$S_{j} = S_{0} + S_{1} \cos \left(k_{pm}x_{j} + \alpha_{pm}\right)$$
$$= S_{0} + S_{1} \cos \left(2\pi \frac{\hat{k}_{pm}}{n_{pixel}}j + \alpha_{pm}\right)$$

Fourier transformed:

$$S_k = \sum_{j=0}^{n_{pixel}-1} S_j \exp\left(-2\pi i \frac{k}{n_{pixel}} \left(j - \frac{n_{pixel}}{2}\right)\right)$$
$$= nS_0 \delta_{k,0} + \frac{n}{2} S_1 \delta_{k,\hat{k}_{pm}} \exp\left(i\pi k + i\alpha_{pm}\right)$$

- spectrum peak sharply at k_{pm}
- phase centering technique for stable phase around peak

Phase monitor: Fourier transf.

image sensor measurement

$$S_j = S_0 + S_1 \cos(k_{pm}x_j + \alpha_{pm})$$
$$= S_0 + S_1 \cos\left(2\pi \frac{\hat{k}_{pm}}{n_{pixel}}j + \alpha_{pm}\right)$$

fourier transformed signal

$$\begin{split} \mathcal{S}_k &= \sum_{j=0}^{n_{pixel}-1} S_j \exp\left(-2\pi i \frac{k}{n_{pixel}} \left(j - \frac{n_{pixel}}{2}\right)\right) \\ &= nS_0 \delta_{k,0} + \frac{n}{2} S_1 \delta_{k,\hat{k}_{pm}} \exp\left(i\pi k + i\alpha_{pm}\right) \end{split}$$

calculated phase α

Reducer

Expander → 20 m transport → reducer

Distance between pair of converge and convex lenses

Control expansion/reduction/diverging angle

After reducer Enter Focusing lenses

f = 250 mm for 2-8, 174 ° f = 300 mm for 30°

 $\sigma_{laser} = \lambda f / \pi \sigma_0$

 σ_0 should be 3.5 µs if transported correctly

 \rightarrow σ_{laser} = 6 μ m for 2-8, 174 (measured for 2 deg)

 \rightarrow $\sigma_{laser} = 7.2 \mu m$ for 30 deg

However too small will cause unstable interference fringe

So design size at 10 μm