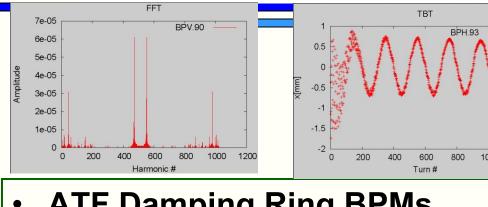
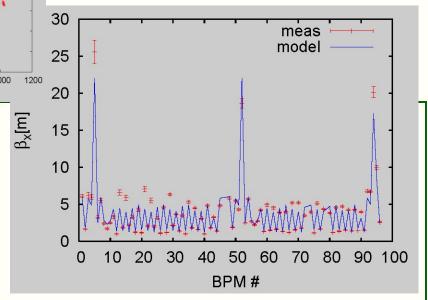
KEK-ATF – Fermilab Collaboration Ideas

David Johnson, Alex H. Lumpkin, Vic Scarpine, Manfred Wendt, Fermilab Presented at SLAC
January 10, 2011

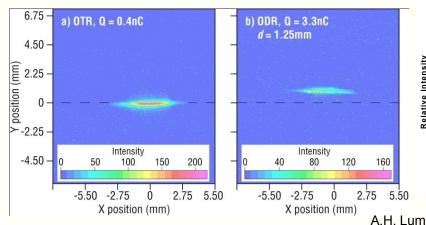
Outline

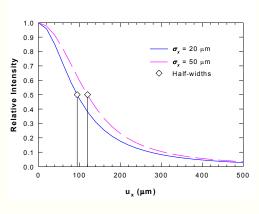


- In frame of the US-Japan HEP activities, try to find mutual interests between KEK and Fermilab on advanced accelerator R&D for e.g. ATF <-> Project X / SRF / ILCTA-NML
- Some ideas include
 - Near-term: Continue with BPM R&D.
 - Mid-term: Non-invasive beam profile measurements based on optical diffraction radiation (ODR) in the near field regime.
 - OTR point spread function investigation.
 - Long-term: Development of high power laser systems.


BPMs & Beam Dynamics

ATF Damping Ring BPMs


- Beam Based Alignment, including pickup tilt analysis
 - with help of M. Woodley
- Systematic TbT studies,
 e.g. coupling minimization
- Establish / help control room tools & GUIs
 - TbT FFT display, beam orbit / manipulation display, use of the CAL system, resonant extraction, etc.
- Upgrade of injector and transport-line BPMs?
 - Buttons, striplines. How many?



Investigations of Optical Diffraction Radiation on 1.1-GeV.Beams at ATF are Relevant to ILC-TA.Beams

- Fermilab
- ODR offers the potential for nonintercepting, relative beam-size monitoring with near-field imaging. This is an alternate paradigm to previous far-field work at KEK and INFN. This has been proposed for the 1 GeV NML at FNAL.
- Propose tests on ATF beams with new scientific CMOS camera by PCO/Andor with very low noise to detect ODR.
- Evaluate sensitivities at 10-50 µm sigma. Test ODR PSF.

APS test at 7 GeV, 3.3 nC Done with CCD camera, but larger beam size case.

A.H. Lumpkin et al., Phys. Rev. ST-AB, Feb. 2007

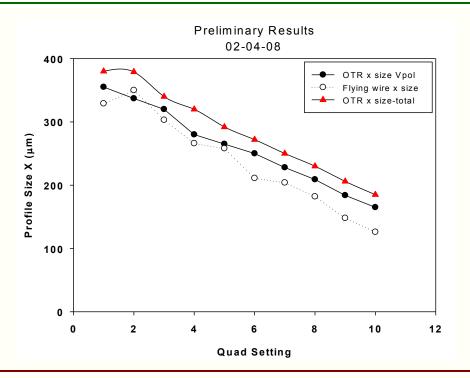
An Analytical Model has been Developed by D. Rule for ODR Near-Field Distributions Based on the Method of Virtual Quanta

We convolved the electron beam's Gaussian distribution of sizes σ_x and σ_v with the field expected from a single electron at point P in the metal plane (J.D. Jackson)

$$\frac{dI}{d\omega}(\mathbf{u},\omega) = \frac{1}{\pi^2} \frac{q^2}{c} \left(\frac{c}{v}\right)^2 \alpha^2 N \frac{1}{\sqrt{2\pi\sigma_x^2}} \frac{1}{\sqrt{2\pi\sigma_y^2}} \times \int dx dy K_1^2(\alpha b) e^{-\frac{x^2}{2\sigma_x^2}} e^{-\frac{y^2}{2\sigma_y^2}},$$

where ω = radiation frequency, v = electron velocity \approx c = speed of light. q = electron charge, N is the particle number, $K_1(\alpha b)$ is a modified Bessel function with $\alpha = 2\pi/\gamma\lambda$ and b is the impact parameter.

A.H. Lumpkin et al., PRST-AB, Feb. 2007

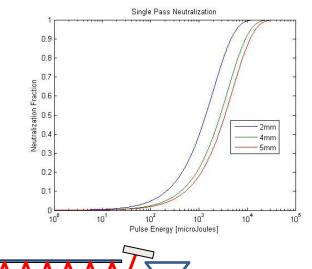

Investigations of OTR at ATF/KEK

- Mutual interest in the optical transition radiation (OTR) point spread function (PSF) and investigation of anomalous polarization effects reported in JLAB and FNAL experiments.
- Determine actual beam image size after deconvolving PSF. Perform test with beam size from 100 to 1 µm with various optical angular collection apertures.
- Subsequently apply technique to the ILC-TA beams at NML at 800 MeV.

JLAB test at 4.5 GeV: Pol. OTR image is \sim 20 μ m smaller than total OTR image. This is \sim 5x more than expected from OTR PSF model.

What happens below 100 µm?

Laser Chopping


Develop a broad band laser chopper system for 2.5 MeV H- bunches in a 325 Mhz bunch structure capable of removing arbitrary bunches to better than the 99% level.

Depending on vertical H- beam dimensions requires tens of mJ 1 micron laser pulses at a

325 Mhz base frequency, arbitrary repetition,

for laser systems with 10's MW avg. power.

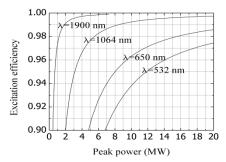
- Multi-pass meander (zig-zag) cavity to reduce pulse energy requirement to approx 200µJ pulses and a pulse length on the order of 1 ns at 325 Mhz (65kW avg power)
- Components for development:
 - Appropriate insertion in MEBT (~1 m) -> lattice design issue
 - Seed laser running at N*325 Mhz highest pulse energy
 - Digital EO pulse picker with good rejection (40dB)
 - Fiber amplifier (and maybe a solid state pre amplifier)
 - Pulse stretcher
 - Cryogenic Laser amplifier with gain > 104
 - Zig-zag cavity design (in vacuum)
 - Cavity length 12-24 inches
 - Material and coating selection

200 uJ (~1 ns) at 325 Mhz base Laser amplifier x40k (cryogenic)

Pulse stretcher (x20)

Fiber amplifier (5 nJ)

Pulse picker (digital)


Seed laser (325 Mhz, ~50 ps, 40pJ)

Mm

Laser Stripping

- Stripping of 8 GeV H- requires laser wavelength of 1 to 2 microns and excitation of the n=2 atomic level. This electron in this level is removed by Lorentz stripping in downstream magnetic field.
- Laser parameters for expected H- beam conditions developed for wavelengths, laser geomerty, and magnetic field at the excitation point by T. Gorlov, SNS.

Required peak laser power for excitation of the n=2 level of hydrogen for different laser wavelengths

Hardware

- High average power laser systems (seed lasers/amplifiers)
- Build up cavity to operate in vacuum and high radiation environment for 1 or 2 μ m wavelengths with 10³ build-up.
 - Material life time
 - Damage studies

CASE	I	II	III	IV	V
Wavelength [nm]	1900	1900	1064	1064	1064
Incidence angle, deg	49.77	49.77	94.63	94.63	94.63
Peak power, P ₀ [MW]	1.1	2.1	6	6.3	9.7
Micropulse energy [mJ]	0.08	0.143	0.4	0.4	0.63
Power for 325 Mhz [MW]	0.026	0.046	0.13	0.13	0.21
Micropulse duration, σ_{τ} rms [ps]	27				
x - rms size, $r_x = r_y[mm]$	2.1	2.0	8.0	2.0	2.0
y - rms size, $r_x = r_y[mm]$	2.1	2.0	1.8	2.0	2.0
x -divergence, $\alpha_x = \alpha_y[mrad]$	1.7	0	0.5	0.7	0
y -divergence, $\alpha_x = \alpha_y$ [mrad]	1.7	0	2.1	0.7	0
Magnetic Field [T]	0	1.1	0	0	1.1

- Case I Ho:YAG, circular laser, no magnetic field
- Case II: Ho:YAG, circular laser, in magnetic field
- Case III: Nd:YAG, elliptical laser, no mag. field
- Case IV: Nd:YAG, circular laser, no mag. field
- Case V: Nd:YAG, circular laser, in mag. field

Other Possible High-Power Laser Projects

Fermilab is in the preliminary stages of investigating other highpower laser projects such as:

1. Laser Proton Acceleration

- For radiation therapy for cancer treatment
- The University of Chicago and Fermilab will collaborate to set up a laser proton accelerator laboratory at Fermilab
- The laser beam must have high peak power (tens of TW).
 - ~ 1 J with a pulse length of ~ 50 fs
 - Thin foil (aluminum or carbon), gas jet or plasma targets

2. Laser Undulator for FEL

- The effect of the laser on the electron can be treated very similarly to an undulator
- Use table top laser power 10¹⁸ 10¹⁹ W/cm² at NML