EXT: Summary of activities, software development, and tuning performance

ATF / ATF2 Schematic Layout

Outline

- EXT tuning
- dispersion correction
- emittance measurement
- coupling correction
- vertical emittance issues
- extraction kicker voltage
- DR orbit \& extraction trajectory
- EXT / FF BBA results
- EXT Laserwire / ATF2 compatibility mode optics
- magnet TRIM function issue
- Summary and Continuing Work

EXT Tuning

OTROX before corrections

OTROX after dispersion correction

OTROX after coupling correction

Dispersion Correction

Flight Simulator Dispersion Package GUI

Dispersion Correction (December 7, 2010)

Before Correction

Fitted dispersion values for BEAMLINE element 1923 (IP):
eta $x=6.84+-0.134 \mathrm{~mm}$
eta $x^{\prime}=64.5+-2.02 \mathrm{mrad}$
eta $y=0.405+-0.00726 \mathrm{~mm}$
eta $y^{\prime}=-236+-3.78 \mathrm{mrad}$

After Correction

Fitted dispersion values for BEAMLINE element 1923 (IP): eta $x=0.487+-0.152 \mathrm{~mm}$
eta $x^{\prime}=140+-2.31 \mathrm{mrad}$
eta $y=-0.0163+-0.00544 \mathrm{~mm}$
eta $\mathrm{y}^{\prime}=12.6+-1.93 \mathrm{mrad}$
beam must be centered in QF1X/QF6X/QS1X/QS2X

Emittance \& Coupling Measurement \& Correction

EXT Emittance Measurement (OTR)

EXT Diagnostic Section

Fast Automatic Emittance Measurement with OTRs

- horizontal beam size too big for OTR ... Gaussian fits to projection not so good
- new camera lens with less magnification? (loss of resolution)
- variable magnification lens?
- ellipse fit parameters sensitive to background subtraction, windowing, etc.
- use standard image analysis techniques from light optics (laser folks are familiar with this)
- ellipse fit parameters can be used to compute projected sizes ... compare to direct Gaussian fits

QK Optimization (Dec 13, 2010)

QK Optimization (Dec 13, 2010)

DR XSR:
$\varepsilon_{\mathrm{y}}=14.1 \mathrm{pm}$
before:
QK1X $=-5.9$
QK2X $=0$
QK3X = 0
QK4X $=-5.0$
$\varepsilon_{\mathrm{y}}=40.4 \mathrm{pm}$

after:
QK1X = -15.7
QK2X $=-1.8$
QK3X $=1.3$
QK4X = 1.3
$\varepsilon_{\mathrm{y}}=33.9 \mathrm{pm}$

Horizontal EXT Emittance Measurements

Date	$\mathrm{N}_{\text {wire }}$	Emit (nm)	BMAG
Dec 142010	4	1.784 ± 0.130	1.10 ± 0.04
Dec 92010	4	1.686 ± 0.102	1.08 ± 0.05
Nov 2010 (?)	EXT kicker controller replaced		
May 18 2010	4	1.905 ± 0.078	1.08 ± 0.03
Apr 21 2010	4	1.212 ± 0.065	1.26 ± 0.03
Mar 17 2010	BS3X rolled ~4 mrad (CCW)		
Feb 25 2010	4	1.868 ± 0.336	1.15 ± 0.12
Feb 17 2010	4	negative	
Feb 3 2010	4	1.626 ± 0.095	1.10 ± 0.06
Jan 28 2010			

Vertical EXT Emittance Measurements

Date	$\mathrm{N}_{\text {wire }}$	Emit (pm)	BMAG
Dec 14 2010	5	27.6 ± 1.8	1.09 ± 0.04
Dec 92010	4	29.3 ± 3.1	1.05 ± 0.02
Nov 2010 (?)	EXT kicker controller replaced		
May 18 2010	5	11.7 ± 2.3	1.43 ± 0.25
Apr 21 2010	5	15.4 ± 2.0	1.78 ± 0.17
Mar 17 2010	BS3X rolled ~4 mrad (CCW)		
Feb 25 2010	5	22.08 ± 0.9	1.19 ± 0.03
Feb 25 2010	5	38.33 ± 1.1	1.10 ± 0.02
Feb 17 2010	5	22.6 ± 1.4	1.15 ± 0.04
Feb 3 2010	5	16.1 ± 0.7	1.06 ± 0.03
Jan 28 2010	5	31.6 ± 1.2	1.03 ± 0.01

Emittance \& Coupling DR Orbit \& Extraction Trajectory

SET-file History (Apr-Dec, 2010)

BBA

EXT BBA

FF BBA

EXT Laserwire / ATF2 Compatibility Optics

EXT LW / ATF2 Compatibility Optics

EXT Laserwire Optics

EXT LW / ATF2 Compatibility Optics

EXT Laserwire Optics
EXT Laserwire Optics

EXT LW / ATF2 Compatibility Optics: some notes

- optics requires polarity flip for QM16FF and QM11FF
- backgrounds for both LW and BSM could be made acceptable
- relaxed FF optics ("BX10BY10")
- FF sextupoles OFF
- laser / e- beam collisions found ($\beta_{\mathrm{y}}{ }^{\mathrm{LW}}=0.3 \mathrm{~m}$ optics)
- beta-match to LW waist after emittance measurement ... failed ... cockpit error
- $\beta_{y}{ }^{\text {LW }}=0.1$ m optics not tested yet
- matching to other FF optics (i.e. "BX2.5BY1") is OK, too
- see Laura Corner's talk ...

Magnet Trim Function Issue

- most magnets have "standard" SET/trim functionality
- enter a new SET value
- magnet trims from present value to new value
- some magnets seem to have special SET/trim functionality (for trim rate control?)
- enter a new SET value
- SET value increments/decrements from present value to new value in some number of steps
- at each step, magnet trims from present value to new SET value for that step
- sometimes this process aborts before reaching the final desired SET value
- SET value is left at an intermediate value
- there's no way to know that the magnet now has the wrong SET value
- QK1X (Dec 152010 04:00)
- original SET value was -15.7 amp (after coupling correction ... $\varepsilon_{y}=34 \mathrm{pm}$)
- magnet strength was scanned from -10.7 amp to +10.3 amp (IP spot size tuning)
- magnet was reset to $-15.7 \mathrm{amp} . .$. trimming aborted ... SET value was left at +1.5 amp
- coupling correction was destroyed (a subsequent OTR emittance measurement gave $\varepsilon_{\mathrm{y}}=54 \mathrm{pm}$)
- all subsequent IP spot size tuning was made with QK1X @ +1.5 amp!

Summary \& Continuing Work

Summary (1)

- Flight Simulator dispersion measurements
- fully automatic control of DR RF ramp
- propagated dispersion values at wire scanners, OTRs, etc. now available to other FS packages
- jitter-based (SVD) measurement still under investigation
- model-based horizontal dispersion correction (η_{x} and η_{x}^{\prime}) works
- good BBA offset measurements for QF1X/QF6X are critical
- beam must be centered in QF1X and QF6X for proper correction
- no empirical fudge factors required
- vertical dispersion correction is still done manually
- sum knob (QS1X=QS2X) is adjusted to minimize FD-phase η_{y}
- fast OTR emittance measurements are now available
- magnification changes to widen horizontal field of view (better horizontal projected fits)
- address sensitivity of ellipse fit to background, windowing, etc. (done, I think ...)

Summary (2)

- full QK-scan minimization of $\mathrm{BMAG}_{\mathrm{y}}{ }^{*} \varepsilon_{\mathrm{y}}$ demonstrated
- ~ 2 hours for full correction
- minimum $\varepsilon_{y} \sim 2 x$ the DR XSR measured value
- can now envision repeating scans to verify orthogonality of skew correction system
- beam extracted from DR seems to have both ε_{y} growth and coupling
- KEX voltage? DR orbit? steering in septum region?
- BBA offsets have been measured for most BPMs
- optics has been developed and tested for simultaneous EXT LW and BSM operation
- compatibility mode operation with "BY1" optics and IP spot size tuning not yet tested

Continuing Work

- FS dispersion package
- automate η_{y} correction
- continue to study non-invasive jitter-based (SVD) dispersion measurement
- coupling measurement / 4D beam reconstruction
- use OTR ellipse fit to extract lengths of semi-major and semi-minor axes and tilt angles
- revisit 4D reconstruction ... try Ilya Agapov's "Cholesky decomposition" method?
- DR orbit / extraction trajectory / ε_{y} / coupling
- need EPICS access to DR BPMs (closed orbit \& extraction buffer)
- check dependence of ε_{y} and coupling on DR orbit (i.e. vertical offset/angle at KEX1)
-save orbits more frequently!
- and ...

