

Institut de Tècniques Energètiques

inte

UNIVERSITAT POLITÈCNICA DE CATALUNYA

ATF2 Alternative lattices & BBA

Presenter: Edu Marin eduardo.marin.lacoma@cern.ch

Acknowledgements : All the ATF2 Tuning team

13.01.2011

10th ATF2 Project Meeting

PLAN OF THE TALK

- 1. The ATF2 Nominal and Ultra-Low β^* Lattice.
- 2. Multipoles effect
- 3. Possible Solutions
 - 1. New lattices
 - 2. Squeeze sequence
 - 3. Tuning results
- 4. Alternatives β_x lattices
 - 1. Keeping the magnets distribution
 - 2. Swapping the magnets
- 5. Quad shunting technique
- 6. Conclusions and Future Plans.

ATF2 LATTICES

MULTIPOLES IN THE ATF2-FFS

2.1.

2.2.

MULTIPOLES EFFECT

ATF2 Nominal Lattice ATF2-NL $\beta_v=0.1$ mm $\beta_x=4$ mm . With multipoles σ_{*}= 5.5 μm 180 order 1 $\sigma_v = 174 \text{ nm}$ (rms) 160 order 2 -----140 order 3 ······ $\sigma_v = 102 \text{ nm}$ (Shintake) P σ_y [nm] order 4 120 order 5 100 $\sigma_v = 51 \text{ nm}$ (core) 80 60 400 40 σ_y gaussian fit 350 20 з 3.5 4.5 5 5.5 2.5 4 6 300 γε_x [μ_m] 250 counts 200 150 100 50 0 ATF2 UL β_v =25µm β_x =4mm . With multipoles -300 -200 0 100 200 -100 180 WATA TATA TATA order 1 Beam Position [nm] 160 order 2 140 order 3 ······ lP σ_V [nm] order 4 120 ATF2 Ultra-low β^* Lattice order 5 100 80 60 σ_x= 4.9 μm 40 20 $\sigma_v = 180 \text{ nm}$ (rms) 0 з 3.5 4 4.5 5 5.5 2.5 6 $\sigma_v = 70 \text{ nm}$ (shintake) $\gamma \epsilon_x [\mu_m]$ σ_v = 48 nm (core)

300

POSSIBLE SOLUTIONS

The possible cures in order to accommodate the existing multipoles could be:

- Decrease β_x at QF1FF (designing a new lattice by strengths and sextupole tilts)
- Run the machine at lower horizontal emittance
- Replace the Normal conducting QF1 by a Super conducting magnet (*)
- Swap the magnets

(*) not covered in this talk. For further detail refer to the following presentation:

Impact on the beam size using a SC QF1 on the ATF2 Ultra-low β^* lattice, during the ATF2 SC meeting in October 2009.

3.1. **NEW LATTICES:** (increase β_x^* from 4mm to 10mm)

2 Intermediate lattices with $\beta_v = 42 \ \mu m \& \beta_v = 75 \ \mu m$ have been worked out.

All these lattices are available at: http://clicr.web.cern.ch/CLICr/ATF2/New_Multipoles/

13.01.2011

10th ATF2 Project Meeting

SQUEEZE SEQUENCE

In order to improve the tuning convergence a squeeze sequence in terms of b_y is recommended to be applied

Since tuning difficulty scales as β_v therefore the ATF2 β_v = 42 µm becomes an attractive lattice.

13.01.2011

10th ATF2 Project Meeting

3.3.1.

TUNING INITIAL CONDITIONS

- Statistical Study formed by 100 different seeds.
- Initial σ_v [0.1 μ m , 0.9 μ m]
- Via MAD-X & MAPCLASS using Simplex algorithm

3.3.2

TUNING STRATEGY

The tuning includes:

- Measurement error on σ_x , $\sigma_v(10\%)$
- Magnet mispowering (10⁻⁴)
- Multipoles
- Transverse misalignments (30µm)
- Tilts (30µrad)

Variables:

- Sextupole transversal Misalignments
- Sextupole tilts
- Magnet strengths.

- <u>Constraint: minimize</u> σ_y measured as the <u>Shintake monitor does</u>
- <u>Tuning via Mad-x & Mapclass using the</u> <u>Simplex algorithm.</u>
 - <u>Tuning in terms of knobs scan for:</u>
 - Dispersion
 - Coupling
 - waist

3.3.3.

TUNING RESULTS

4.1. ALTERNATIVES LATTICES

($\beta_x = 7$ mm & $\beta_x = 8$ mm)

Regarding β_x , intermediate solutions have been obtained in order to preserve:

- a more suitable aspect ratio σ_v / σ_v
- To not deviate from ILC & CLIC parameters

LATTICE	σ _y /σ _x [10 ⁻³]		
	$\sigma_x = 10 \text{ mm}$	$\sigma_x = 8 \text{ mm}$	$\sigma_x = 7 \text{ mm}$
NOMINAL ($\beta_y = 100 \ \mu m$)	41.5 / 5.2	39.0 / 4.5	40.7 / 4.0
	~ 8	~ 8.7	~ 10.1
INTER-HIGH ($\beta_y = 75 \ \mu m$)	37.7 / 5.2	34.4 <u>/</u> 4.5	37.7 / 4.2
	~7.2	~7.7	~ 9
INTER-LOW ($\beta_y = 42 \ \mu m$)	28 / 5.1	28 / 4.6	28.3 / 4.4
	~ 5.5	~ 5.9	~ 6.4

Without altering the current magnet distribution along the beam line.

It has been used all the sextupoles tilts in order to reduce the beam size.

4.2

SWAPPING THE MAGNETS

The new multipoles are scaled from the measured ones.

QUAD SHUNTING TECHNIQUE

• The measurement consists on shunting and moving the QM16FF quadrupole

- The drift between the first 2 BPMs allows to measure the incoming angle precisely
- Knowing the R-matrices from QM16 to the downstream BPMs the angle jitter can be propagated for a later subtraction

5.2.

QUAD SHUNTING TECHNIQUE

Comparison of the two different set of measurements:

5.2.

QUAD SHUNTING TECHNIQUE

Comparison of the measurements:

CONCLUSIONS & FUTURE PLANS

- A new version of the ATF2 Nominal and Ultra-low lattices have been obtained. Considering all the multipoles present in the FFS magnets.
- The statistical tuning study shows
 - Nominal lattice: 68 % of the seeds reach σ_v < 45.5 nm (Shintake).
 - Interm. $\beta_v = 75 \mu m$ lattice: 87% of the seeds reach $\sigma_v < 39.7 \text{ nm}$ (Shintake)
 - "Ultra-low" $\beta_v = 42 \mu m$ lattice: 84 % of the seeds reach $\sigma_v < 32.0 \text{ nm}$ (Shintake).
- Ordering the magnets according to their quality would improve the aspect ratio σ_v / σ_v . The statistical tuning study for the ATF2BX1.5BY1 shows:
 - 70 % of the seeds reach $\sigma_v < 47$ nm (Shintake).
- A beam based alignment resolution below 10 µm was reached.

To be done...

- Design a feasible ATF2 Ultra-low β_v from the ATF2 Swap lattice
- Implement the squeeze tuning technique as a unique process, implementing the already installed skew sextupole magnet 13.01.2011