ATF2 Simulation Studies

Glen White, SLAC

11th ATF2 Project Meeting, SLAC

January 13, 2011

Overview

- Tuning procedure for the final focus system of ATF2.
- MAPCLASS optimised lattice including all measured magnet multipole components
 - No sextupole rolls used
- Lucretia electron beam modeling code (Matlab)
 - Heterogenous parallel compute environment for Monte Carlo analysis of errors in non-linear optics.

Online Tuning Algorithm Development

- 1. Specify list of errors
 - 1. Generate a database which characterises every unknown aspect of the accelerator
- 2. Generate 100 versions of machine lattice
 - 1. Each lattice has a different set of errors generated from error table.
 - 2. Typically, each error condition is generated from a gaussian distribution.
- 3. Simulate initial steering/BBA/coupling, dispersion correction etc for each lattice seed.
- 4. Calculate list of aberrations present at IP (up to 3rd order required).
- 5. Make a knob to correct most common aberration from 100 seeds being simulated.
- 6. Iterate 4&5, each iteration generate a knob which is orthogonal with other knobs generated previously. Repeat until no further improvement seen in IP spot size on average across simulated seeds.

Generation of Linear IP Tuning Knobs

- Calculate linear response of desired set of aberrations at IP to desired set of potential knob coefficients from particle tracking.
- Form linear response matrix equation:
 - M.k = a
 - k = vector of knob coefficients
 - a = vector of IP aberration gradients
 - M = response matrix
- Use Matlab "Iscov" function to solve linear least-squares problem:
 - (a-M.k)'.diag(1/w²).(a-M.k)
 - Use weight vector w to control solution to give approximately orthonormal knobs.

Required IP Tuning Knobs Generated

- Main Knobs generated to control dominant aberration sources at IP:
 - Vertical waist
 - Vertical dispersion
 - <x'y> coupling
 - T326
 - T322
 - T324 (NEW for these optics)
- Additional aberrations included in constraint vector:
 - Horizontal waist
 - Horizontal dispersion
 - U3122 (NOT for these optics)

Simulated Tuning Process

- Apply expected error distributions.
- Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
- Use FFS FB to get beam through FFS.
- Correct Dy/Dy¹ in EXT using skew-quad sum knob.
- Orrect coupling in EXT using coupling correction system.
- Use FFS FB for launch into FFS.
- FFS Quad BPM alignment using quad shunting with movers.
- FFS Quad mover-based BBA.
- FFS Sext BPM alignment using Sext movers and IP BPM.
- Generate and apply IP tuning knobs.

Considered Error Sources

Error Parameter	Error magnitude
x/y/z Post-Survey	200 um
Roll Post-Survey	300 urad
BPM - Magnet field center alignment (initial install) ($\times \& y$)	30 um
BPM - Magnet alignment (post-BBA, if BBA not simulated) (x $\&$ y)	10 um
Relative Magnetic field strength (dB/B) systematic)	le-4
Relative Magnetic field strength (dB/B) [random]	1e-3
Magnet mover step-size (x & y / roll)	300 nm / 600 nrad
Magnet mover LVDT-based trim tolerance (x & y / roll)	1 um / 2 urad
C/S - band BPM nominal resolution (x & y)	100 nm
Stripline BPM nominal resolution (x & y)	10 um
IP BPM nominal resolution (x & y)	2 nm
IP Carbon wirescanner vertical beam size resolution	2 um
IP BSM (Shintake Monitor) vertical beam size resolution	use attached data
EXT magnet power-supply resolution	11-bit
FFS magnet power-suppy resolution	20-bit
Pulse - pulse random magnetic component jitter	10 nm
Pulse - pulse relative energy jitter (dE/E)	le-4
Pulse - pulse ring extraction jitter (x, x', y, y')	0.1 sigma
Corrector magnet pulse-pulse relative field jitter	le-4

Nominal (1cm/ 0.1mm B) Optics - No Multipoles

Effect of Magnet Field Errors

- Increased magnetic field errors produce undetectable betatron mismatch at IP.
 - Produces small spread in beam size due to variable focusing, but also damages performance of Sextupole aberration compensation and degrades orthogonality and operability of designed multiknobs.
- Work to keep small where sensitivities highest.

Long-Timescale Tuning

- Application of more basic tuning knobs over long timescales
- Strongly dependent on tuning source noise (here Shintake Monitor)

MAPCLASS Tuned Optics with Multipole Data Added (No SEXT Rolls)

Scanning strength of skew sextupole magnet has little effect

"Alternate" Knob Definitions from V-System Interface

Compare expected tuning performance of these knobs substituted with the similar knobs developed earlier.

Diamonds = Alternate Knobs Circles = Previously demonstrated knobs

IP Motion

- 20,000 pulses @ 1.56 Hz (1 seed)
- IP vertical position drifts around on scales of a few 100 nm an hour.
- Slow enough that this can be 'de-trended' using Shintake Monitor as IP position monitor.

Beam Size Growth

- With feedbacks on, y beam size at IP as a function of time
- Mean of 100 seeds shown
- Growth rate ~ 0.5 nm per hour

Long – Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

- Vertical IP beam size over 2 week period
- Mean and +/- 1 sigma RMS from 100 seeds shown at each point

Summary

- Established tuning procedure for normal optics configuration (no multipoles) which produces goal IP spot size in a timescale of a few shifts.
- Including the measured multipole values introduces additional aberrations which are harder to remove and a reduced performance is expected, vertical IP spot size expected 50-60 nm after tuning.
- Adding single skew sextupole and adding strength as a knob does not have any effect, needs to be set based on MAPCLASS initial matching prior to tuning and not used as a knob.
- Adding T324 knob may improve results, will investigate next.

Magnet Strength Sensitivities

Relative setting error of magnets to produce an increase in vertical spot size at IP of 1nm.

Lucretia Software Development

LucretiaMC

- Extension to Matlab-based Lucretia particle tracking program to enable real-time parallel consideration of multiple Beamline 'seeds'.
- Use Matlab "Distributed Computing Server and toolbox" tools to distribute multiple versions of beamline arrays across multiple host machines and operate on these globally.
- Extend Lucretia tracking engine to deploy in a parallel fashion on either a GPU or multi-core CPU

Vertical Dispersion Knob

	SF6	SF5	SD4	SF1	SD0	QD0
X						
Y	-0.623		-0.126	0.514	0.549	
Roll						-1

<x'y> Coupling Knob

	SF6	SF5	SD4	SF1	SD0	QD0
X						
Y	0.516		-0.176	0.032	0.242	
Roll						1

Vertical Waist Shift Knob

	SF6	SF5	SD4	SF1	SD0	QD0
X	0.461		-1	0.206		
Y	-0.154		0.047	0.696	0.418	
Roll						

T322 Knob

	SF6	SF5	SD4	SF1	SD0	QD0
X						
Y	0.417		-0.17	0.833	0.649	
Roll						1

T326 Knob

	SF6	SF5	SD4	SF1	SD0	QD0
X						
Y	-0.717		0.294	0.311	0.035	
Roll						-1

0.03mm By Optics Test

0.03mm By Optics Test

- Spread in effective IP beta function post tuning.
- Initial
 - betay 0.019 mm
 - emitx 3um
 - emity 12pm
 - sigy (Fit) 18nm
 - sigy (RMS) 21nm
 - sigy(1/2/3) 19.1/19.2/15.1 nm

IP Tuning with FFS Sextupole Multiknobs @ ATF2

Iterative use of various knobs to bring down IP spot size by scanning with IPBSM.

IP Tuning Results During Continuous Operations Week

• Experience of application of tuning knobs during May running period at ATF2 with 10X nominal β^* optics (expected beam size ~150nm).