ATF2 Project

Y. Renier

Transfer Matrix Measurements

Frajectory Steering

On Line Dispersior Measurement

Conclusion and Prospects

Steering & On line Dispersion Measurement Software

Y. Renier

CERN

11th ATF2 Project Meeting 13 January 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Transfer Matrix Measurements

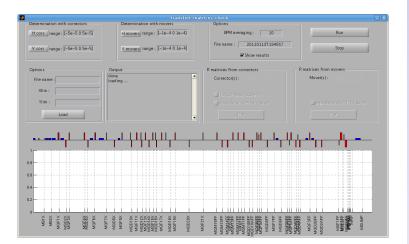
Principle

- Change corrector strength or quadrupole mover position.
- Fit BPM reading variation function of that change.
- Compare with On line mode prediction.

Improvements

- Can measure multiple correctors and movers.
- Faster measurements with movers.
- Estimate correctors strength scale errors.

ATF2 Project


Y. Renier

Transfer Matrix Measurements

Frajectory Steering

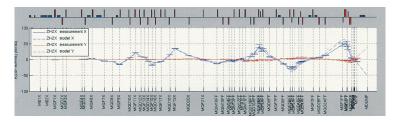
On Line Dispersion Measurement

Interface

ATF2 Project

Y. Renier

Transfer Matrix Measurements


Frajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

December Measurements

Usefulness

- Quick check of the on-line optics.
- Allowed to discover a problem with QM16FF and QM13FF mover system.

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Trajectory Steering

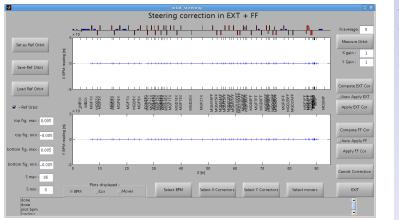
Principle

- Measure beam position at each BPM (corrected by BBA).
- Use corrector or quadrupoles on movers to correct to a reference orbit.

Improvements

- Minimize corrector strength and mover displacements (no more saturation problems).
- Gain implemented.
- Cancellation works properly.
- Much less badly set correctors observed.

ATF2 Project


Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

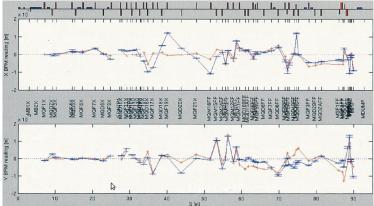
Interface

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering


On Line Dispersion Measurement

Conclusion and Prospects

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

December Measurements

Before correction (Background> 100)

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

・ロト・西ト・ヨト・ヨー うくぐ

December Measurements

After 4 corrections in EXT, 1 in FF (Background < 1) مام بل الم ما بال X BPM reading [m] AGF21X 100200 MBZX AGF1X AGF3X AGESX AGD8X AGD8X AGF9X V BPM reading [m] 30 70 40 50 60 80 90 10 20 S [m]

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

Remarks

- Trajectory correction in 3 clicks !
- First time used by "not me" : 1 new happy user ;-)
 - ・ロト・四ト・ヨト ヨー ろくの

On Line Dispersion Measurement

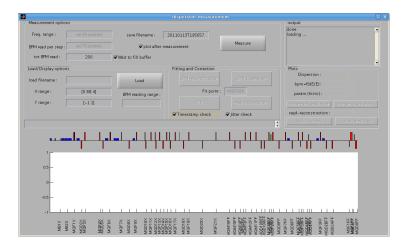
Principle

- Measure pulse to pulse beam position variation at each BPM.
- Reconstruct the parameter at injection : $x, x', y, y', \frac{\Delta E}{E}$ (weights $\propto \frac{1}{\text{BPM resolution}^2}$).
- Get the correlation the position measurements and $\frac{\Delta E}{E}$ to get dispersion at each BPM.
- Fit the dispersion.

Improvements

- Check the synchronization of the different BPMs systems.
- Detect bad pulses.

ATF2 Project


Y. Renier

Transfer Matrix Measurements

Frajectory Steering

On Line Dispersion Measurement

Interface

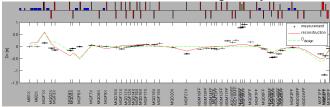
ATF2 Project

Y. Renier

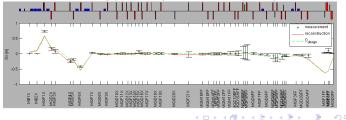
Transfer Matrix Measurements

Frajectory Steering

On Line Dispersion Measurement


Conclusion and Prospects

・ロト・日本・日本・日本・日本・日本


Problems

Experimental Problems

- Good measurement when the ramp is used.
- Bad measurement otherwise using cavity BPMs.

Works well using just stripline BPMs (bad precision).

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Frajectory Steering

On Line Dispersion Measurement

Problems (2)

Characterization

- Nominal optics produce very large beam size & fluctuations in FF.
- Energy reconstruction is much more sensitive to BPM scales errors and modeling errors.

Some Numbers (at QF5FF):

• horizontal jitter due to energy jitter :

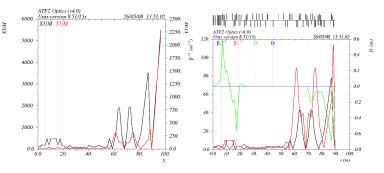
$$D_x = 0.2m \frac{\Delta E}{E}_{jitter} = 5.10^{-5}$$

 $\Delta x_{E \ jitter} = D_x \times \frac{\Delta E}{E}_{jitter} = 10 \mu m$

► horizontal jitter due to position and angle jitter : $\sigma_x = 2mm \frac{\Delta x_{jitter}}{\sigma_x} = 20\%$ $\Delta x_{jitter} = \frac{\Delta x_{jitter}}{\sigma_x} \times \sigma_x = 400 \mu m$

Y. Renier

Transfer Matrix Measurements


Frajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problems (3)

ATF2 Project

Y. Renier

Transfer Matrix Measurements

rajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

Explanation

- ► Final Doublet BPMs not used $\Rightarrow \frac{\Delta E}{E} \propto X(MQF9FF) - X(MQF5FF).$
- reason : same $\beta_x and \phi_x$ but different D_x values.
- Subtraction of 2 large numbers to get a small one ...

Planned Solutions

Better model & scales factor determination

- $ightarrow \simeq 1\%$ scales factor uniformity required.
- Same for uncertainty on transfer matrices.
- Not realistic.

Using Ring's BPMs

- Lots of dispersive regions, small fluctuations.
- Last turn readings needed.
- Not available yet.

Using Extraction line Chicane

- Large dispersion, small beam sizes.
- Not very precise BPMs.
- Scales factors are not very goods.

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

・ロト・西・・田・・田・・日・

Planned Solutions

Better model & scales factor determination

- $ightarrow \simeq 1\%$ scales factor uniformity required.
- Same for uncertainty on transfer matrices.
- Not realistic.

Using Ring's BPMs

- Lots of dispersive regions, small fluctuations.
- Last turn readings needed.
- Not available yet.

Using Extraction line Chicane

- Large dispersion, small beam sizes.
- Not very precise BPMs.
- Scales factors are not very goods.

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

・ロト・西ト・山田・山田・山下

Planned Solutions

Better model & scales factor determination

- $ightarrow \simeq 1\%$ scales factor uniformity required.
- Same for uncertainty on transfer matrices.
- Not realistic.

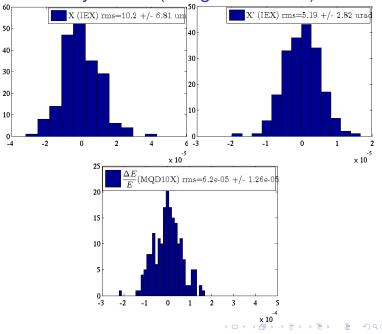
Using Ring's BPMs

- Lots of dispersive regions, small fluctuations.
- Last turn readings needed.
- Not available yet.

Using Extraction line Chicane

- Large dispersion, small beam sizes.
- Not very precise BPMs.
- Scales factors are not very goods.

ATF2 Project


Y. Renier

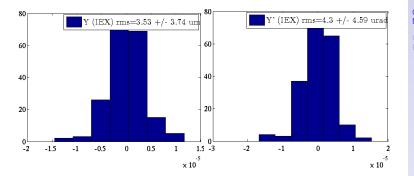
Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Preliminary results (using EXT BPMs)

ATF2 Project


Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Preliminary results (using EXT BPMs)

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Conclusion and Prospects

・ロト・日本・モート ヨー うへぐ

Conclusion

Transfer matrices check application available for all.

- Extensively checked.
- Has already been used successfully by various people.
- Trajectory steering application available for all.
 - Still sometimes need to repeat corrections.
 - Has already been used successfully by Glen.
- On line dispersion measurement still under development.

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement

Prospects on the On-line dispersion Measurement

- Separate energy reconstruction from positions and angles.
- Will use extraction line BPMs for energy reconstruction.
- Would benefit from availability of turn by turn DR BPMs ?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Any suggestions / remarks ?

ATF2 Project

Y. Renier

Transfer Matrix Measurements

Trajectory Steering

On Line Dispersion Measurement