Low-Q IPBPM and Electronics for the IP feedback

A.Y. Heo, S.W. Jang, J.K. Hwang <u>H.S. Kim</u>, H.K. Park, E.S. Kim

Accelerator Physics Lab. KNU (KyungPook National Univ.)

Contents

- Introduction and Motivation
- Low-Q IPBPM
- Electronics of version 1 (KNU low-Q IPBPM Electronics vI)
- Design for electronics of version 2 (KNU low-Q IPBPM Electronics v2)
- Test & Plan w/ Electronics v1 in Jan.'11
- Further Study

Introduction and Motivation

- Goal 2 for multi-bunch beam stabilizations in KEK-ATF2
 - ✓ Achievement of vertical beam size of 37 nm rms
 - \checkmark Control of vertical beam position by a few nanometer
- Beam stabilization for multi-bunch operation requires using of a low-Q cavity BPM
- Collaboration with FONT group for the decisions on position resolution and latency
- □ Electronics v1 (with Y-port only) ready to measure the position & resolution
- Design (tentative) for the electronics v2 (with both X and Y ports) was also performed in order to improve position & resolution sensitivities of the electronics v1
- □ Fabrication of electronics v2 will be started after beam study on BPM resolution with electronics v1 at ATF2 in this winter (and spring maybe)

Low-Q_{load} IPBPM Design

- Coupling Slot; widening width & lengthening slot & moving toward center
- RF Coupler ; position & gap-distance tuning to decrease Q_{ext}

Low-Q IPBPM Parts

Parameters of Low-Q IPBPM

Normalized shunt impedance (by MAFIA) S.H. Shin

Beam offset	Norm. Shunt Impedance			
	X-dipole mode	Y-dipole mode		
l mm	0.504 Ohm	1.440 Ohm		
2 mm	2.011 Ohm	5.887 Ohm		

Design parameters (by HFSS)

port	f [MHz]	beta	Q ₀	Q _{ext}	Decay Time (ns)
Х	5,712	8	5,900	730	18
Y	6,426	9	6,020	670	15
Ref.	6,426	0.0117	1,170	10,0250	29

Calculation (by CST for V_{out} and formula for Power)

Port	Beam Offset	Position Sensitivity	0.5 X 10 ¹⁰ e ⁻	1 X 10 ¹⁰ e ⁻
V	1nm		1.76uV (-102.1dBm)	3.52uV (-96.1dBm)
~	2nm	2.2 μν/ππ/πς	3.52uV (-96.1dBm)	7.04uV (-90.0dBm)
V	1nm	27)//am/aC	2.96uV (-97.6dBm)	5.92uV (- 91.5dBm)
ř	2nm	3.7 μν/πη/πς	5.92uV (-91.5dBm)	11.84uV (-85.5dBm)
Ref.	-	3.27 V/nC	2.62uV (21.4dBm)	5.23V (27.4dBm)
6				

Di-pole $\frac{R}{Q}(y) = \frac{8LT^2}{\omega\epsilon_0 ab} \left(\frac{2\pi}{b}\right)^2 y^2$ Formula a = 61.09 mmb = 48.6 mm L = 6.0 mm $\omega = 2\pi x 5714$ [MHz] in x & $2\pi x 6426$ [MHz] in y $c = 3 \times 10^8 \text{ m/s}$ $T = sin(\omega L/2c)/(\omega L/2c)$; transit time factor $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ y = beam offset, and $Q=Q_0$ $P_{out} = \frac{\omega U}{Q_{ext}} = \frac{\omega^2}{4Q_{ext}} (R/Q) q^2 \exp\left(-\frac{\omega^2 \sigma_z^2}{c^2}\right)$ ω = 2πx5712[MHz] in x & 2πx6426[MHz] in y $q = 1.6 \times 10^{-19} \times 10^{10}$ (Coulomb; charge) = 1.6nC Q_{ext} = external Q factor of cavity z = 50 Ohm $c = 3 \times 10^8 \text{ m/s}$ σ = 8.0x 10⁻³ m (bunch length in rms) Conversion into Power [dBm] \rightarrow 10 Log(P[W])+30

 \rightarrow 10 Log(V[V]²/Z[Ohm])+30

Typical Design Parameters ; Low-Q IPBPM vs. High-Q IPBPM

Low-Q IPBPM

port	f [MHz]	beta	Q ₀	Q _{ext}	Decay Time (ns)
Х	5,712	8	5,900	730	18
Y	6,426	9	6,020	670	15

HIgh-Q IPBPM

T. Nakamura

port	f [MHz]	beta	Q ₀	Q _{ext}	Decay Time (ns)
Х	5,712	1.4	5,116	3,695	60
Y	6,426	3	4,834	1,595	30

Low-Q IPBPM ; signal decay

Multi-bunch beam position signals and beam intensity signal

Beam-offset vs. Power¹⁾ from the ports in Low-Q IPBPM

Beam	X-Port		Y-Port			
offset	Vout0 [V]	Power [dBm]	Vout0 [V]	Power [dBm]		
1 nm	3.52E-06	-96.1	5.92E-06	-91.5		
2 nm	7.04E-06	-90.0	1.18E-05	-85.5		
3 nm	1.06E-05	-86.5	1.78E-05	-82.0		
4 nm	1.41E-05	-84.0	2.37E-05	-79.5		
5 nm	1.76E-05	-82.1	2.96E-05	-77.6		
6 nm	2.11E-05	-80.5	3.55E-05	-76.0		
7 nm	2.46E-05	-79.2	4.14E-05	-74.6		
8 nm	2.82E-05	-78.0	4.74E-05	-73.5		
9 nm	3.17E-05	-77.0	5.33E-05	-72.5		
10 nm	3.52E-05	-76.1	5.92E-05	-71.5		
11 nm	3.87E-05	-75.2	6.51E-05	-70.7		
12 nm	4.22E-05	-74.5	7.10E-05	-70.0		
13 nm	4.58E-05	-73.8	7.70E-05	-69.3		
14 nm	4.93E-05	-73.1	8.29E-05	-68.6		
15 nm	5.28E-05	-72.5	8.88E-05	-68.0		
16 nm	5.63E-05	-72.0	9.47E-05	-67.5		
17 nm	5.98E-05	-71.4	1.01E-04	-66.9		
18 nm	6.34E-05	-71.0	1.07E-04	-66.4		
19 nm	6.69E-05	-70.5	1.12E-04	-66.0		
20 nm	7.04E-05	-70.0	1.18E-04	-65.5		
100 nm	3.52E-04	-56.1	5.92E-04	-51.5		
1 μm	3.52E-03	-36.1	5.92E-03	-31.5		
10 µm	3.52E-02	-16.1	5.92E-02	-11.5		
100 µm	3.52E-01	3.9	5.92E-01	8.5		
1 mm	3.52E+00	23.9	5.92E+00	28.5		

Thermal noise

	-	
	N = kTB [dBm]	BW [MHz]
	-88.0	400
	-89.2	300
noise	-91.0	200
decrease	-94.0	100
	-97.0	50
latency	-98.0	40
decrease	-99.2	30
	-101.0	20
	-104.0	10

k = Boltzmann's constant $T_{in} = T_0 = 290K, B = bandwidth$

We will keep Δf b/t RF and LO within 100MHz. (from FONT)

Low-Q IPBPM Electronics v1

Electronics v1 w/ 10dB amp, MFB2FF BPM

KEK Electronics Layout for IPBPM

D

KNU Electronics v1 Layout for Low-Q IPRPM

- BW of LPF: 50MHz (Thermal Noise : -97 dBm)
- Measured N.F : 5dB (by NF analyzer) (equivalent noise power: -92dBm)

- Measured Latency : 17ns

Low-Q IPBPM Electronics v1

14

N.F. Measurement in Electronics v1

*Freq [MHz]	First NF measurement [dB]	Second NF measurement [dB]
10	4.690	4.822
17	4.813	4.935
24	4.699	4.861
31	4.730	4.846
38	4.653	4.704
45	4.854	4.699

* Output frequency, namely difference between RF & LO - Used NF analyzer : Agilent N8973A

 \rightarrow Noise Figure of Electronics v1 : ~5dB

 $N = k(Tin+(F-I)T_0)B$

N = Equivalent Noise Power
k = Boltzmann's constant

$$T_{in} = T_0 = 290k$$

B = BandWidth(BW)

- → Equivalent input power: -92dBm
- \rightarrow Estimated resolution : ~2nm (considering only equivalent noise power with NF)

Gain measurement in Electronics of v1

RF : 6.426GHz (Agilent E8557C) LO: 6.446GHz, +13dBm (Anritzu MG3692B) S/A: Agilent E4448A

Measured Conversion Gain:~10dB

→ Electronics vI cannot detect low input power such as power corresponding 2nm beam offset due to small conversion gain.

→ when the gain is 10dB, sensitivity power is given by about -65.5dBm (with noise level of 366 uV in SIS3301)

Required Parameters for Electronics v2

Goals

- Achievement of resolution of a few nanometers and the feedback of nanosecond time scale
- Latency < 40ns (X and Y ports)</p>
- Dynamic Range: 2nm ~ 7nm, or ~1µm w/ add. variable attenuator (X and Y ports)
- Sensitivity and Gain

Port	Sensitivity for	2nm beam offset	Gain		
	0.5×10 ¹⁰ e ⁻	1×10 ¹⁰ e ⁻	0.5×10 ¹⁰ e⁻	Ix10 ¹⁰ e-	
Х	3.52u∨ (-96.1dBm)	7.04u∨ (-90.0dBm)	40.3 dB	34.3 dB	
Y	5.92uV (-91.5dBm)	Ⅱ I.84uV (-85.5dBm)	35.8 dB	29.8 dB	
Ref.	2.62uV (21.4dBm)	5.23V (27.4dBm)	-	-	

Calculation of Required Gain for 2 nm Resolution in Electronics v2

When it is digitized by SIS3301

- ▶ 14bit, +/-1V
- Noise level (0~100MHz) ~ 2-3 ADC (244-366uV)
- Gain = Noise level / sensitivity
 - 366uV / 7.04uV = 34.3dB in X (100% charge)
 - 366uV / 11.84uV = 29.8dB in Y (100% charge)
 - ▶ 366uV / 3.52uV = 40.3dB in X (50% charge)
 - ▶ 366uV / 5.92uV = 35.8dB in Y (50% charge)
- Higher gain than version I with I0 dB are necessary.
 - larger than 40.3dB in X (in 50% charge)
 - Iarger than 35.8dB in Y (in 50% charge)

Design for Electronics of Version 2

- Conversion Gain : 40dB(X), 36dB(Y)
- BW of LPF : 50MHz

(Thermal Noise : -97 dBm)

Cascaded N.F : 2.88dB

```
(equivalent noise power: -94dBm)
```

- Estimated position resolution : ~Inm
- Estimated Latency : 20ns

Beam Test w/ Low-Q IPBPM and Electronics v1 in this winter, and v2 will be fixed

KNU low-Q IP-BPM electronics v1

KNU low-Q IP-BPM electronics v2 (tentative)

BEAM TEST (Jan. & March, '11) -Position sensitivity -Resolution measurement

High position sensitivity Multi-bunch available

Experiment Layout (Jan. 2011)

Low-Q IPBPM Layout (1 KNU IP-BPM + 2 KEK IP-BPM)

Experiment Layout (Jan. 2011)

Experiment Plan (Jan. 2011)

- KNU electronics sensitivity for C-BPM
 - w/ 10 dB Amp : 83.35uV/nm (-68.57 dBm) [Dec. 2010]
 - w/o 10 dB Amp : 26.36uV/nm (-78.57 dBm)
- Convert to that of IPBPM
 - > 1 μ m for C-BPM [MFB2FF] => 0.234 μ m for IPBPM
 - w/ 10 dB Amp : 356.2uV/nm (-55.96dBm)
 - w/o 10 dB Amp : 112.64uV/nm (-45.96dBm)
 - w/ 20 dB Amp : 1126.4uV/nm (-35.96dBm) (expected)

Experiment Plan (Jan. 2011)

- KNU electronics sensitivity for IPBPM
 - 122uV(ADC 14bit w/o amp) / (112.64uV/nm) = 1.083nm
 - 122uV(ADC 14bit 10dB amp) / (356.2uV/nm) = 0.343nm
 - 122uV(ADC 14bit 20dB amp) / (1126.4uV/nm) = 0.108nm (expected)
 - ▶ 480uV(OSC 11bit w/o amp) / (112.64uV/nm) = 4.332nm
 - 480uV(OSC 11bit 10dB amp) / (356.2uV/nm) = 1.370nm
 - 480uV(OSC 11bit 20dB amp) / (1126.4uV/nm) = 0.433nm (expected)

Further Study

- Low-Q IPBPM Calibration w/ Electronics vI
- Position Sensitivity test w/ Electronics v1 for Low-Q IPBPM depending on DAQ instruments (11bit Osc. and brand-new ADC)
- Resolution Measurement w/ add. 10 dB amp. and 20 dB amp.
- Revision on the Design of the Electronics v2, and Fab.
- Beam Study w/ Low-Q IPBPM and Electronics v2
- Compact 4 IPBPMs w/ Electronics v2 in IP region