C/S/IP-band cavity BPMs

A. Aryshev (KEK), S. T. Boogert (JAI@RHUL), G. Boorman, F. Cullinan, J. Frisch, A. Heo, Y. Honda, J.Y. Huang, S.J. Hwang, N. Joshi, E-S Kim, Y. I. Kim, A. Lyapin, D. McCormick, S. Molloy, J. Nelson, Y.J. Park, S.J. Park, T. Smith, T. Tauchi, N. Terunuma, G. White.

SLAC, KNU, PAL, KEK, JAI-RHUL, KEK, ATF https://www.pp.rhul.ac.uk/twiki/bin/view/JAI/ BeamPosition ATF2 Project meeting, SLAC 14th January 2011

Introduction

- ATF2 BPM systems
 - Progress with S-band system
 - Started with IP region
- Calibration tone system
- Systematic effects
 - Calibration stability
 - Beam jitter
 - Quadrupole strengths
 - Passive monitoring of RF stability

- Upgraded LO system
 - IP region
 - Extraction line
- Advanced topics
 - Multi-bunch analysis (Nirav Joshi)
 - Passive BPM monitoring (Frankie Cullinan)
- IP region BPMs (YI Kim)

ATF2 BPM systems

- 41 BPMs in total now
 - 2 IP BPMs, PREIP, M-PIP
 - S-Band BPMs stable without DR RF Δf ramp (see later)
- Diode on first C-band reference
 - Other 3 references not used

ATF2 BPM layout

Thursday, 13 January 2011

Digital processing algorithm (DDC)

- I and Q depend on
 - start trigger
 - beam arrival
 - DDC sample point
- E.g. change in trigger start, beam arrival or saturation levels causes change in I and Q and hence calibration
 - Compensate for changes in code

Calibration

Hardware improvements

T. Smith

- LO system was uneven
 - BPM resolution was dependent on input LO RF power
- Each box now driven by much closer to +3 dBm

IP region BPM installation

T. Smith/YI Kim

- Honda-san installed
 - 2 BPM, IPBPM block
- T. Smith installed
 - Mixdown electronics
 - 5.7 GHz source for x
- Talk slides from YI Kim later

Full BPM system

000	X /atf/contro	ol/epics/atf2/cbpm//edm/summary.ed	I
Diagnostics HW check SIS Config	T/LO/Cal RF Debug	Correlation dip amp dip pha X pos	Y pos Status mcal EXIT
Mode Beam Cal	Sim	History r his dip amp dip pha	Puise 0
Expert Save/restore DAQ Config	SBand RF Analysis	Waveforms all r wfs all x wfs all y wf	CASR Resembers Case 20101117 023437 dat
cal stat ac	ction cal	stat action	cal stat action
00 GD10X cal good Tune	Cal Log 15 QM12FF Cal	good Tune MCal Log 30 GC	D4AFF cal good Tune MCal Log
e1 GF11X cal good Tune	Cal Log 16 QM11FF Cal	good Tune MCal Log 31 G	F3FF cal good Tune MCal Log
a2 GD12X cal good Tune (Cal Log 17 GD10BFF Cal	good Tune MCal Log F	REF4 nocal good Tune Log
e3 GD16X cal good Tune	Cal Log REF2 nocal	good Tune Log 32 GC	D2BFF cal good Tune MCal Log
GF17X cal good Tune	Cal Log 1000000000000000000000000000000000000	good Tune MCal Log 33 Of	DZAFF cal good Tune MCal Log
REF1 nocal good Tune	Log 19 GF9BFF Cal	good Tune MCal Log F	REFS nocal good Tune Log
CDIODE	Log 20 SF6FF Cal	good Tune MCel Log St	DIODE
es GD18X cal good Tune	Cal Log 21 QF9AFF cal	good Tune MCal Log SF	PHASE
GF19X nocal good Tune	Cal Log 22 GD8FF Cal	good Tune MCal Log 34 S	FIFF cal good Tune MCal Log
GD20X Cal good Tune	Cal Log 23 QF7FF Cal	good Tune MCai Log 35 G	F1FF cal good Tune MCal Log
GF21X cal good Tune	Cal Log 24 QD6FF Cal	good Tune MCal Log % S	DOFF Eal good Tune MCal Log
IPBPM notune good Tune	Cal Log 25 GF5BFF Cal	good Tupe MCal Log 37 Q	DOFF cal good Tune MCal Log
10 GM16FF cal good Tune	Cal Log 26 SESEE Cal	good Turn MCal Log P	REIP Tune Cal
11 GM15FF cal good Tune N	MCal Log CESAEE Cal	good Tane Mean Log	IP1 Tune Cal
12 OM14EE Cal good Time	MCal Log REE3 pacal	good Tune MCal Log	IP2
ta EB2EE Cal good			W-PIP and good Tune Cal Log
cal good Tune M	wcar Log 2 GD46FF cal	good Tune Mcal Log	
cal good Tune N	cal	good Tune MCal Log A	
-0008		8 8	Log
4000-7	\sim \wedge	$ \langle \vee \rangle $	Titt monitor
		da	LookNU
-2000-	A	a de la cara	Fast Kicke
-4000		······································	V IPBPM
0 5	10 15	20 25	30 35 40

Thursday, 13 January 2011

S-band BPMs

- Last operation year
 - X-Y cross coupling -20 dB
- Cavities retuned over summer
 - X-Y cross coupling -40 dB
- Electronics have high stability
 - <1% and 1 degree @ S-band</p>
- Only residual problem is when the DR RF Δf ramp
 - System develops multi (≥2) state instability
- See later

Calibration summary

F. Cullinan

 S_x and S_y

Constants from calibration – Position scale

Date	30th No	vember	9th December		% Difference		Difference between two
Bpm	x	у	x	у	x	у	calibrations typically around 10%
QF7FF	-1079.16	-920.60	-1114.29	-864.31	3.26	6.12	
QD6FF	638.82	1232.23	1226.96	2044.38	92.07	65.91	Much worse for some
QF5BFF	-563.35	892.04	-931.15	704.84	65.29	20.99	bpms
SF5FF	-1210.70	-914.82	-1428.11	-846.22	17.96	7.50	
QF5AFF	-962.03	761.54	-921.47	767.12	4.22	0.73	
QD4BFF	1212.31	791.72	871.75	833.71	28.09	5.30	
SD4FF	-892.92	-881.22	-766.17	-972.00	14.20	10.30	
QD4AFF	893.23	1043.73	756.17	922.45	15.34	11.62	
QF3FF	1016.75	1271.86	1046.76	1096.57	2.95	13.78	
QD2BFF	-819.97	-1013.89	-745.18	-1033.80	9.12	1.96	
QD2AFF	945.95	982.21	979.98	976.45	3.60	0.59	
SF1FF	1387.10	-4641.33	1991.18	3568.53	43.55	176.89	
QF1FF	-6168.54	-2202.88	-2726.82	-1840.62	55.80	16.45	
SD0FF	-2736.45	3039.16	-2728.85	-2074.11	0.28	168.25	
QD0FF	-1903.78	12570.09	-1370.41	4570.24	28.02	63.64	

Calibration summary

F. Cullinan

 $\begin{array}{c} \theta_{\text{IQ},x} \text{ and} \\ \theta_{\text{IQ},y} \end{array}$

Constants from Calibration – IQ rotations/radians

Date	30th November		9th December		Difference/rad		Lä
Зрт	x	У	x	У	x	у	r
QF7FF	-1.437	-1.361	-1.421	-1.372	0.016	0.012	tł
QD6FF	0.599	-0.308	0.563	-0.315	0.036	0.008	_
QF5BFF	-1.127	0.406	-1.199	0.377	0.072	0.030	N
SF5FF	-1.346	-0.849	-1.381	-0.916	0.035	0.066	
QF5AFF	1.411	0.366	1.409	0.462	0.002	0.096	
QD4BFF	0.921	0.280	1.011	0.422	0.090	0.142	
SD4FF	-0.849	-0.020	-0.833	0.037	0.016	0.057	
QD4AFF	1.204	1.296	1.196	1.241	0.008	0.055	
QF3FF	-0.568	-0.563	-0.507	-0.523	0.061	0.039	
QD2BFF	-1.410	-1.475	-1.349	-1.448	0.061	0.026	
QD2AFF	-0.487	-0.016	-0.417	0.094	0.070	0.110	
SF1FF	-0.777	-1.380	-1.479	1.088	0.701	2.468	
QF1FF	1.382	1.410	0.726	0.685	0.655	0.724	
SD0FF	1.428	-1.526	0.996	1.024	0.431	2.550	
2D0FF	-0.250	1.211	-0.933	0.402	0.683	0.810	

Largest differences in IQ rotation between two calibrations is 0.7 rads to the nearest multiple of π

Most are under 0.1 radians

Short term calibration stability

- Repeated calibrations over within I hour for QD2AFF
 - Variation in x up to 10%, y a few %
 - < I degree for θ_{IQ}

$ heta_{IQ,x}$	S_x	$ heta_{IQ,y}$	S_y
-0.452	928.7	0.0748	955.7
-0.446	1075.1	0.0744	958.9
-0.448	997.9	0.0743	961.7
-0.455	907.4	0.0713	959.8
-0.452	963.8	0.0741	961.5

Jitter subtracted calibration

A. Lyapin

 Subtract beam orbit variation when doing calibration again with QD2AFF

Direction	$ heta_{IQ,x}$	$ heta_{IQ,x}^{sub}$	S	S_{sub}
X	-0.4577	-0.4098	1489.35	951.76
Х	-0.4500	-0.4469	1105.67	966.96
Х	-0.4615	-0.4140	1257.52	953.72
Х	-0.4528	-0.4739	789.21	976.82
Х	-0.4492	-0.4087	1853.02	945.40
У	0.0763	0.0800	955.97	946.33
У	0.0711	0.0683	965.42	974.70
У	0.0700	0.0631	963.68	992.35
у	0.0708	0.0802	918.46	898.59
у	0.0755	0.0869	958.96	919.94

Calibration tone

 C band and S-band tones injected directly into electronics

S. Boogert

- Reconstruct I and Q from beam and cal tone for each pulse
- Monitor I_{cal} and Q_{cal} for every machine pulse
- Monitor and average during calibration procedure

Calibration stability

- Monitored during one week
- Summary of I and Q stability

S. Boogert

- Magnitude
- Phase
- Indicative of calibration scale (S) and IQ rotation (θ_{IQ})

Phase correction

• Error/bug/oversight since start of operation

A. Lyapin

$$\Delta \phi = 2\pi (f_d - f_r) \Delta t_0$$

- Need a phase correction due to changes in timing of BPM system
- Measure phase difference between dipole and reference
 - As function of CBPM TD2

Work plans

- Jitter subtracted calibration for all BPMs
- Online resolution monitoring
- Passive stability monitoring
- t₀-frequency correction
- Re-commission C-band references
- Continue with IP region BPM
- Check with unlocked C-band sources

Summary

- System "complete" and working well
 - Resolution ~200 nm with 20 dB attenuators
 - Stability good over I week time scales
 - Calibration tone and electron beam model check out
 - IP region now the problem
 - C and S band system working well
- Long to-do list
 - Need less intrusive methods to check system performance