

Overview of hadronic physics 'upgrades' in Geant4 9.4

John Apostolakis CERN, PH/SFT

Overview:

- Context
- Improvements of FTF/Fritiof model
- Physics list: updates and new option
- First plans for 2011
- Note
 - Used extensively Slides/material from
 - Dennis Wright's talk at Geant4 Technical Forum (16 November 2010)
 - Vladimir Uzhinskiy's talk on FTF at SNA+MC2010 Conf. (Oct 2010, Tokyo)

Context

- Work of the hadronic group over the past years has been driven by requests from HEP detectors (esp. LHC) needs for
 - better hadronic shower shapes
 - better energy response and resolution
 - good progress, but still work to do
 - improved kaon interactions
 - models extended to handle this
 - ion-ion interactions
 - development ongoing
 - anti-nucleon and anti-ion reactions
 - development program recently begun

Summary of Major Improvements in 9.4

FTF model

- added excitation energy calculation and introduced Reggeon cascading
 - resulted in extension of applicability to lower energies
 - smoother transition to cascade possible
- improved pion absorption
- Bertini-style cascade
 - full review of pi-nucleon and nucleonnucleon partial cross sections
 - many corrections made

Improvement of FTF model

- Extension of FTF model down to 3-5 GeV for hadron-nucleus scattering
 - tuned parameters of Reggeon cascading
 - improved fragmentation of small-mass strings
- As a result, improved behavior below 8 GeV
 - smoother transition from cascade to string model in physics lists (e.g. FTFP_BERT)
 - transition from cascade to string model now possible at lower energies
 - can now consider using Binary cascade as alternate to Bertini

FTF Correction of multiplicity of intra-nuclear collisions - BEFORE

Nmax=1, Plab=3, 5 GeV/c: Nmax=2, Plab=8 GeV/c: Nmax=3, Plab=12

FTF Correction of multiplicity of intra-nuclear collisions - AFTER

Reg. Cascade Tuning

Results – Description of the HARP-CDP exp. data

1<u>6</u>

Tuning of parameters of reggeon cascading

Goal: to determine momentum spectra of nucleons

- Complex analysis of gold interactions with photoemulsion nuclei at 10.7–GeV/nucleon within the framework of cascade and FRITIOF models.
 By EMU–01 Collaboration (M.I. Adamovich *et al.*).
 1997. Zeit. fur Phys.A358:337–351,1997
- Longditudinal light-cone momentum fraction

 $dW \propto \exp[-(x_i^+ - 1/A)^2/(d_x/A)^2]dx_i^+, \quad d_x = 0.05.$

Main parameters tuning:

• Cnd, d_x , p_T^2

tuning the reggeon cascading parameters :Results

Unexpected result !

Parameters carry **Signal** of a transition! The transition takes place at Plab= 4-5 GeV/c

Comparison with HARP Results

HARP-CDP hadroproduction data: Comparison with FLUKA and GEANT4 simulations. HARP-CDP Collaboration (A. Bolshakova *et al.*) CERN-PH-EP-2010-017, Jun 2010. 21pp. Submitted to Eur.Phys.J.C, e-Print: arXiv:1006.3429 [hep-ex]

J. Apostolakis 2011.01.20

Smooth transition

Comparison - More detail

Summary of Major Improvements in 9.4

- Precompound and de-excitation models
 - GEM model fixed and re-introduced
 - replaced old-style emission probabilities (based on pre-1960's data) with new parameterization
- Binary Light Ion cascade
 - improvements to allow de-excitation of smaller fragments
- QMD model (ion-ion collisions) extended up to 5 GeV/n
- CHIPS models extended to all particles, all energies
 - validation in progress, some problems found

Models vs. IAEA Data for p+Au -> $\Im \square X$

Features in Geant4 9.4 beta

- Bertini-style cascade (M. Kelsey, D. Wright)
 - old pion-nucleon and nucleon-nucleon angular distributions replaced (for two-body final states)
 - Removed almost all energy-momentum non-conservation
 - Reduced memory churn by factor ~10
- Transitioning to using integer A and Z exclusively in hadronic code (G. Folger)
 - now require use of specific isotopes no effective Z or average A allowed

• can no longer use materials with average Z and A

Features in Geant4 9.4 beta

- Extensive improvements in G4Precompound model and de-excitation code
 - hybrid use of Weisskopf-Ewing and GEM models to improve nuclear fragment spectra from decay
 - improved inverse capture cross sections
 - enabled use of multi-fragmentation model for light nuclei
 - numerous bug fixes and improvements in logic

– J.M. Quesada & V. Ivantchenko

New Features in Geant4 9.4

- Faster neutron capture 'XS' model
 - includes some of the detail found in HP
 neutron models
 V. Ivantchenko and A. Ivantchenko
 - old GHEISHA-based model too simple
 - high precision neutron model too slow

n + Fe Cross Section Data vs CHIPS, LHEP, and FastHP Parameterizations

New Features in Geant4 9.4

- Interfaces from Bertini/INCL cascade models to G4Precompound model (optional)
 - allows our best de-excitation model to be used in a uniform way with existing cascade codes
 - Bertini-style cascade (J. Yarba/FNAL)
 - already used by Binary cascade
- Anti-p, n, d, t, 3He, So nucleus cross sections
 - first step in expanding hadronic models to handle incident anti-nucleons and anti-light ions
 - Simplified Glauber parameterization (Grichine)
 - New Glauber calculation improved parameterisations (Galoyan, Uzhinskiy)

Draft Plans for 2011

- Shower shape and calorimeter response improvements
 - develop and validate new physics lists to exploit recent model extensions
 - try new implementation of nuclear trailing effect in Bertini cascade
- Completed implementation of hadronic cross section de-design
 - developed plan last year to treat large number of cross section data sets uniformly
 - will allow smoother joining of one set to another

Draft Plans for 2011 (cont.)

- Revised anti-nucleon, and new anti-nucleus interactions
 - Bertini-style cascade
 - FTF model
- Cross section improvement for kaons, hyperons
 - Kaon oscillation: a first treatment
- Installation of alternatives to current HP neutrons
 - Conversion of latest neutron library data to G4NDL format (CIEMAT)
 - Allows use of full ENDF-VII, Jeff 3.1, ..
 - Existing HP implementation, with improvements
 - ENDL: based on Livermore neutron DB
 - With new implementation

Both to offer more isotopes than HP models 21 21

Draft Plans for 2011(cont.)

- Add initial and final state clustering models to Bertini
 - to improve light ion production at cascade energies
- Interface of G4Precompound and deexcitation to INCL cascade

Draft Plans for 2011(cont.)

- Nucleus-nucleus scattering
 - currently our models do not perform well above ~5 GeV/c
 - extend them: FTF, RQMD
 - low energy scattering
 - current models do not go below ~100 MeV
 - will then have complete coverage of nucleusnucleus A and incident energy
 - develop and validate new physics lists to use new ion-ion models and cross sections

Backup slides (EM+)

Updates on Electromagnetic Physics for Geant4 9.4

Borrowed from presentation of V.Ivanchenko for Geant4 EM standard group (Geant4 Technical Forum – 16 November 2010)

Outline

- Main activities of EM standard physics working group in 2010
- EM standard modifications for Geant4 9.4
 - Models of ionisation
 - Multiple scattering
 - Physics Lists
 - Helper classes
- Draft plan for 2011

Main activities for Electromagnetic Physics in 2010

Ionisation

- Improved parameterization of density effect
- Addition of anti-deuteron, anti-triton, anti-He3, anti-alpha are included in all Physics Lists
- Addition of the new model for low-energy ionization of negatively charged particles
- Improved models of ionization for monopoles and heavy exotic objects
- Upgraded model of fluctuations of energy loss
- Bremsstrahlung
 - Alternative angular distribution
- Multiple scattering
 - Urban93 model substitute Urban92 for e[±]
 - WentzelVI model of multiple scattering for muons
 - New tests for multiple scattering of high energy particles
- Infrastructure upgrades
 - Physics Lists
 - Helper classes
- Regular activity on validation
 - Testing suite run for each reference tag and any significant change of software
 - CPU performance profiling

Ionisation Model Developments

- Review and upgrade of parameterisation (A.Bagulia)
 - Density effect
 - Shell Correction
 - Barkas Corrections
- Ionisation of magnetic monopole
 - Transportation of monopoles in field is added (J.Apostolakis, B.Bozsogi)
 - Delta-electron production is added
- Ionisation of heavy highly charged objects
 - Fixed low–energy behaviors

Model for low-energy negatively charged particles (A.Bagulia)

- A model for a calculation of the stopping power by regarding the target atom as an assemble of quantum harmonic oscillators is implemented
- ICRU'73 data for oscillator strengths
- Used for new anti-particles and other particles with negative charge

Upgrade of the Model of Fluctuations (L.Urban)

Stability of the upgraded fluctuation model versus step limit

Accuracy of simulation of peak of energy deposition in 0.3 mm Silicon for 9.4

Comparison of Most Probable Energy Deposition △ between GEANT4 9.4 and Bichsel data with Gauss fit, emstandard & Cut = 10 um

J. Apostolakis 2011.01.20

Accuracy of simulation of FWHM of energy deposition in 0.3 mm Silicon for 9.4

Comparison of Full Width at Half Maximum w between GEANT4 9.4 and Bichsel data with Gauss fit, emstandard & Cut = 10 um

In 9.3 χ^2 was 17.4

Multiple scattering developments

- Several validation of electron scattering confirms that G4UrbanMscModel93 is more precise than G4UrbanMscModel92
 - Urban93 model become the default for 9.4
 - Optimized for electrons and positrons
- Number of new tests for high energy particles confirms that WentzelVI model is better for muons than Urban90 model which was used for a long time
 - G4WentzelVIModel become the default

New Backscattering simulation with L.Urban model (A.Lechner)

• Electron energy 0.1 – 1 MeV

Calorimeter response

20

Effect of MSC

New WentzelVI model J. Phys: Conf. Ser. 219 (2010) 032045

- Is much simpler, but fully theory based
 - Wentzel differential cross section with mass, spin and form-factor corrections
 - Separate, original step limitation
 - Limit step of high energy particles in extended media (LHCb request)
- Angular limit between the single and multiple scattering is selected dynamically, depending on momentum and step size
 - May be applied for transportation in vacuum or lowdensity media
 - Can be used together with the hadron elastic scattering process

MuScat test results for 9.4

New test of high energy MSC CERN summer student (O.Dale)

Probability for plane scattering angle 0,: 7.195 GeV & emstandard_opt0

Probability for plane scattering angle 0,: 7.195 GeV & emstandard_opt2

J. Apostolakis 2011.01.20

High energy multiple scattering: 175 GeV beams off Cu target (O.Dale)

Comparison of GEANT4 and data θ_e : Cu & 175 GeV

 Central part of distribution reproduced by all models within data uncertainty and agree with Moliere theory

- Data available for 50 200 GeV for various targets (Be, Al, Cu, Sn, Pb)
 - G.She<mark>n et al., Phys. Rev. D20 1584 (1979)</mark>

EM Physics List constructors for 9.4

Constructor	Components	Comments
G4EmStandardPhysics	Default (QGSP_BERT, FTFP_BERT)	ATLAS and other HEP productions, other applications
G4EmStandardPhysics_option1	Fast due to simple msc step limitation, cuts used by photon processes (QGSP_BERT_EMV,)	CMS & LHCb prod., good for crystals – not accurate for sampling EM calos
G4EmStandardPhysics_option2	Experimental: WentzelVI model for hadron msc, BS angular distribution for bremsstahlung (QBBC,)	Used for testing of new models

- Main user interface
- Used by Geant4 validation suites
 - Are robust due to intensive tests by Geant4 team
- Oriented on HEP applications

Helper classes in 9.4

- Easy access to cross sections and stopping powers (G4EmCalculator)(shown on TestEm0)
- C++ interface to EM options alternative to UI commands (G4EmProcessOptions)
- G4EmSaturation Birks effect
- G4ElectronIonPair sampling of ionisation clusters in gaseous or silicon detectors
- G4EmConfigurator add models per energy range and geometry region

eant 4 Draft plan for 2011

- Ionisation
 - finalize tuning of ICRU73QA model (for negatively charged projectiles)
 - Improved ionisation for highly changed objects including high energy ions
 - Specialization of the fluctuation model for electrons and positrons
- Multiple scattering
 - Provide combined model for hadrons where Coulomb and strong scattering consistently taken into account
- Bremsstrahlung
 - Increase precision of computation of total cross section 0
 - Improve sampling (including angular distributions)
- Pair production
 - Add triple final state; improve angular distribution
- Polarisation
 - Implement spin precession in field using Stokes vector formalism
- Validation
 - Regular run existing testing suite
 - Extend tests for extra thin target data
 - Follow up issues from LHC experiments' observations
 - Interact with CALICE and other experiments, test-beam