

Pions at the Low-energy Frontier

Nils Feege University of Hamburg

AHCAL Main Meeting, DESY, 20 January 2011

Fermilab TT Data ('08 - '09)

Energy Sum MC / DATA

Trends for FTF_BIC and FTFP_BERT agree -MC / DATA ratio decreases with energy

Exploring the Lower Energies

Below 6 GeV: MC / DATA relation changes

Longitudinal Profiles

Mean Shower Length < z >

from calorimeter start

from Ist hard interaction

Mean Shower Length < z >

from calorimeter start

from Ist hard interaction

Differences Alex' - My Analysis

Noise Above 0.5 MIP

π Event Selection

Events After Cuts - 20 GeV

(I) I0x10 scintillator coincidence

- (2) no signal in veto wall(remove trash)
- (3) multiplicity counter < 4000 ADC (remove multi-particle events)
- (4) outer Čerenkov off (remove electrons)
- (5) shower start in AHCAL (remove muons)
- (6) shower start before layer ||

Cut Effects on MC - 20 GeV

(1) 10x10 scintillator coincidence

- (2) no signal in veto wall (remove trash)
- (3) multiplicity counter < 4000 ADC (remove multi-particle events)
- (4) outer Čerenkov off (remove electrons)
- (5) shower start in AHCAL (remove muons)

(6) shower start before layer I I

Shower Start Finder: Performance

Processor developed by B. Lutz

10 GeV (MC)

Events After Cuts - I GeV

- (I) I0x10 scintillator coincidence
- (2) no signal in veto wall(remove trash)
- (3) multiplicity counter < 4000 ADC (remove multi-particle events)
- (4) energy (1 st layer) \geq 1 MIP (remove empty events)
- (5) energy (layer 29 38) < 4 MIP (remove muons)

Cut Effects on MC - I GeV

(I) 10x10 scintillator coincidence

- (2) no signal in veto wall (remove trash)
- (3) multiplicity counter < 4000 ADC (remove multi-particle events)
- (4) energy (1 st layer) \geq 1 MIP (remove empty events)
- (5) energy (layer 29 38) < 4 MIP
 (remove muons)</pre>

- 8 GeV 30 GeV: MC / DATA relation trends agree with CERN 2007 analysis (A. Kaplan)
- I GeV 6 GeV: Data ready to challenge MC models in new energy range

BACKUP - SLIDES

Fermilab TT Data ('08 - '09)

Muon Rejection At I GeV

π purity > 98 % π efficiency > 85 %

Veto Wall Efficiency

TCMT Muon Tracker

TCMT Muon Tracker

Bad Cell Statistics

dead cells (DB)	218 (2.9%)
LED: RMS < 30	+
noise: RMS > 140	+ 15
noise: mean outside -3 +3	+ 31
noise: rate > 0.1	+ 6
noise: >1 peaks	+
TOTAL	292 (3.8 %)

LED: Dead Cells

"standard" definition: RMS < 20 (noise) → dead here: RMS < 30 (LED) → dead

Noisy Cells

Noise Rate > 0.5 MIP

Instable Cells

peak finder (ROOT:TSpectrum) \rightarrow spot multiple peaks