Heidelberg Activities

<u>Alexander Tadday</u> Patrick Eckert Kirchhoff-Institute for Physics Heidelberg University

KIRCHHOFF-INSTITUTE FOR PHYSICS

Outline

- Status of Birks' law Implementation in Geant4 First simulation results
- 2. Development of a tile/SiPM quality assurance system (Patrick Eckert)

Reminder: kB Measurement

- Light-yield of HCAL scintillator was measured as function of electron energy (MPIK Heidelberg)
- Fit with Birks' model
 → Fit parameter kB

Fit function:

$$LY(E_0) = S \int_0^{E_0} \frac{1}{1 + kB\frac{dE}{dx}} dE$$

S: Scintillator efficiency

Alexander Tadday - HCAL Meeting - 20.01.2011

Curve shows 120keV e⁻ with kB=0.0151cm/MeV

Alexander Tadday - HCAL Meeting - 20.01.2011

Alexander Tadday - HCAL Meeting - 20.01.2011

Method Improvement

Method Improvement

Method Improvement

Method Comparison

- Birks' coefficient independent of final range parameter (step-size)
- Residual fluctuation from fit instabilities (production of deltaelectrons)

First look on EM showers

 Simulation: 	<u>Simulated runs:</u>		
 Mokka 7-02 / geant4-9.3 Modified Birks' saturation class (interface remains identical) 	run id	beam energy [GeV]	particle
 Birks' parameter can be specified 	350118	10	e+
 Digitization: calice software version 04-01 	350117	15	e+
 5 different combinations simulated: 	350114	20	e+
1. kB = 0.007943cm/MeV (default)	350113	25	e+
2. kB = 0.0151cm/MeV (integral)	350111	30	e+
3. kB = 0.007943cm/MeV (integral) 4. kB = 0.0151cm/MeV (default) Only for	350110	40	e+
5. kB = 0 (Birks' law switched off) \int reference	350128	50	e+

Run Analysis

Mean shower energy

- New (integral) method with new Birks' coefficient (0.0151cm/MeV) results in ~1% smaller signal
- Effect is approximately constant over the full energy range
- Small influence is expected as the dE/dx of electrons/positrons relatively small
 -> Relative amount of energy lost due to quenching is small

Conclusion & Outlook

- Measured Birks' coefficient higher than currently used one Measured value: kB = 0.0151cm/MeV ("old": kB = 0.007943cm/MeV)
- Default Geant4: Effective Birks' coefficient needed in order to describe visible energy correctly (kB is step-size dependent)
- Integral method allows to calculate precisely the visible energy deposition for each step (kB is step-size independent)
- To Do
 - Influence on hadronic showers (stronger influence expected)
 - Performance optimization (integral sampling)
- -> Tile quality assurance

Tile Quality Assurance Patrick Eckert

Tile Quality Assurance

Reminder:

- Development of a scalable measurement system which allows to test millions of tiles +SiPMs in reasonable time
- Complete characterization of one tile within a few seconds

Two sources for testing:

- UV-LED for SiPM properties (gain, saturation curve)
- Sr90 for for SiPM/Tile properties (MIP response)

Tile Tester prototype design mostly completed – assembly in progress

Geant4 Design studies

Geant4 studies for design optimization Goal: sufficient MIP spectrum quality at high rate

	High signal to noise (slow)	low signal to noise (fast)
Size of trigger tile	small	large
Collimator radius	small	large
Trigger threshold	high	low

Side view of source and tile

Accuracy vs. speed: Trigger rate should be ≈10kHz Optimize trigger tile size Optimize collimation radius Optimize trigger threshold

Sr90 different from real MIP: How to derive MIP response from Sr90 signal

Readout Scheme

400 pixel MPPC G ~ 500.000

Conclusion

- Measurement system for large scale tile and SiPM quality assurance tests under construction
- First successful tests of readout chain

Backup

MipPerGeV (GeVPerMip)

Visible energy fraction

