

Interactions of hadrons in the SiW ECAL (CAN-025)

Philippe Doublet - LAL Roman Pöschl, François Richard - LAL

Outline

- Introduction
- The SiW ECAL (in 2008)
- Beam test setup at FNAL
- MC simulations
- Algorithm to find interactions
- Classification
- Optimisation
- Results
- Conclusions

Introduction

- Studying interactions of hadrons naturally supports the development of Particle Flow Algorithms (PFA) with a better knowledge of hadronic showers
 - We want to investigate the hadronic shower structure with the fine 3D sampling of the ECAL
- Our goal: analysis and comparison of interactions of pions in the SiW ECAL using test beam data samples and Monte Carlo simulations
 - We compare observables with various models of interactions in Geant4

The SiW ECAL in 2008

- Fully equipped ECAL
- 3 x 3 wafers of 6 x 6 pads
- Sensors = Si pixels of 1 cm x
 1 cm → tracking possibilities
- Absorber = W
- 30 layers in 3 different stacks :
 - 1.4 mm of W
 - 2.8 mm
 - 3.6 mm
- $\approx 24 \text{ X}_0 \approx 1 \text{ }\lambda_1 \approx \text{ half of the}$ hadrons interact inside the ECAL volume

Picture of the fully equiped SiW ECAL

- 3 CALICE calorimeters installed : SiW ECAL, Analogue HCAL, TailCatcher (TCMT)
- Triggers: scintillators, Cherenkov counters
- Muon cuts added on the basis of simulated muons :
 < 0.6% remaining
- Ask for only one primary track found with the MipFinder
- Events left : E (GeV) 2 4 6 8 10

 N evts 13723 84849 55486 161522 369021

Monte Carlo simulations

- For comparisons, different physics lists were simulated
- QGSP BERT is used as reference for optimisation: no difference between physics lists is seen at this level

E (GeV)	2	4	6	8	10
QGSP BERT	Bertini			+ LEP	
QGS BIC	LEP + BIC (secondaries)				
QGSP BIC	LEP				
LHEP	LEP				
FTFP BERT	Bertini Fritiof				

A look at interactions of hadrons

- Picture of a generic interaction in the calorimeters :
 - A primary track enters the detector (« MipFinder »)
 - 2) The interaction occurs
 - 3) Secondaries emerge from the interaction zone

Visual example

- 2D profiles of an event at 10 GeV in the SiW ECAL
- High energy deposition when the interaction starts
- Interaction layer confirmed by visual inspection
- Large number of secondaries created
- Equation to be satisfied:

 $E_i > \text{Ecut}$, $E_{i+1} > \text{Ecut}$, $E_{i+2} > \text{Ecut}$

(sort of naïve cut)

New cut needed at these small energies

The previous cut (Ecut) will fail at smaller energies: fluctuations no more negligible.

Need a new criterion: relative increase in consecutive layers

→25% of the events with an endpoint in the ECAL are seen where 10% could not be found using the other criteria

→ Use both in combination

F and F' values after the known endpoint of the MC particle in the ECAL

$$F = \frac{E_i + E_{i+1}}{E_{i-1} + E_{i-2}} > \text{Fcut and } \frac{E_{i+1} + E_{i+2}}{E_{i-1} + E_{i-2}} > \text{Fcut}$$

Visual example : a new kind is found

- Using the new criterion, one finds a new kind of event
- Here, local energy deposition
- Quantified by the relative increase in energy and a decrease :

$$\frac{E_i + E_{i+1}}{E_{i-1} + E_{i-2}} > \text{Fcut and } \frac{E_{i+1} + E_{i+2}}{E_{i-1} + E_{i-2}} > \text{Fcut}$$

$$+ \frac{E_{i+2} + E_{i+3}}{E_{i-1} + E_{i-2}} < \text{Fcut}$$

Classification

- High energy deposition
 - → « FireBall » —
- Increase continues + veto for

backscattering

→ « FireBall »

$$\frac{E_{i+2} + E_{i+3}}{E_{i-1} + E_{i-2}} > \text{Fcut} + \frac{E_{\text{around},i}}{E_i} > 0.5$$

Works here and meant for small energies

Event view of the « FireBall » type at 10 GeV

Classification

- High energy deposition
 - → « FireBall »
- Increase continues + veto for backscattering → « FireBall »
- Local increase → « Pointlike »

$$\frac{E_{i+2} + E_{i+3}}{E_{i-1} + E_{i-2}} < \text{Fcut}$$

 Remark: delta rays are naturally included in « Pointlike » but contribute less than 4%

Event view of the « Pointlike » type at 2 GeV

Classification

- High energy deposition
 - → « FireBall »
- Increase continues + veto for backscattering → « FireBall »
- Local increase → « Pointlike »
- Others = non interacting
 - « MIP »
 - « Scattered »
- Remark: delta rays are naturally included in « Pointlike » but contribute less than 4%

Event view of the « Scattered » type at 2 GeV

Optimisation of the cuts (with MC)

- Method: use MC to optimise 3 parameters
 - Standard deviation of « reconstructed true » layer
 - Interaction fraction = fraction of events with interactions found
 - Purity with non interacting events = fraction of events
 with no interaction found

Graphs:

- Ecut varied from 1 to 20 by steps of 1 unit
- Fcut varied from 1 to 10 by steps of 0.5 unit

Interaction fraction: defining interacting and non interacting events

- Simulated events
- Interaction layer known from the endpoint of the primary
- •Energy per cell / energy in the last layer before interaction for each layer
- Interacting events are selected with $e_k > 1.2 \times e_{k-1}$ (thus « Scattered » events will not be taken)
- Other events are non interacting events and used to calculate purity

Interaction fraction = fraction of interacting events found

→ should contain « FireBall » + « Pointlike »

Purity = fraction of non interacting events

found

→ should contain « MIP » + « Scattered »

Example at 10 GeV

- Areas of interest
- Results:

E (GeV)	Ecut	Fcut
2	3	5 → 6
4	4	6 → 6
6	7	6 → 6
8	9	6 → 6
10	8	6.5 → 6

choice to merge all Fcuts for simplicity since changes have little systematics

Efficiencies after optimisation

- The efficiency to find the true interaction layer within ±1 and 2 layers is the result of the optimisation.
- It is compared with another method.

E (GeV)	η (±1)	η (±2)	η (3-4, ±2)
2	54 %	62 %	22 %
4	58 %	67 %	51 %
6	62 %	72 %	64 %
8	64 %	75 %	69 %
10	74 %	83 %	78 %

Rates of interactions

Interaction rates similar between physics lists

Small systematics with Ecut and Fcut in ±1

Mean shower radius

$$\langle r \rangle_E = \sqrt{\sigma_{E,x}^2 + \sigma_{E,y}^2} \qquad \text{Gives an idea of the lateral extension of the shower} \\ \sigma_{E,x}^2 = \frac{\sum\limits_{hits} x_{hit}^2 E_{hit}}{\sum\limits_{hits} E_{hit}} - \left(\frac{\sum\limits_{hits} x_{hit} E_{hit}}{\sum\limits_{hits} E_{hit}}\right)^2 \qquad \text{Discrepancy for r > 50 mm} \\ \text{MC normalised to number of data events} \\ \text{MIP peak} \\ \text{Broad peak for interaction} \\ \text{Broad peak for interaction} \\ \text{Califor PRELIMINARY} \\ \text{(a) 2 GeV} \qquad \text{(b) 4 GeV} \qquad \text{(c) 6 GeV} \\ \text{Mass disser radial (nm)} \\ \text{(d) 8 GeV} \qquad \text{(e) 10 GeV} \\ \text{(b) 10 GeV} \\ \text{(c) 10 GeV} \\ \text{(e) 10 GeV} \\ \text{(f) 10 GeV} \\ \text{($$

Separation per class of event: 8 GeV

Data vs QGSP_BERT at 8 GeV

Separation per class of event, even at 2 GeV

Spotted discrepancy at 8 GeV: QGSP and FTFP

Longitudinal profiles

Build longitudinal profiles with pseudolayers:

- = 1 pseudolayer in first stack
- = 2 pseudolayers in second stack
- = 3 pseudolayers in third stack

With energies extrapolated linearly

Colors are for various secondary contributions (from MC table)

Longitudinal profiles: FireBall

(a) QGSP_BERT featuring the(b) FTFP_BERT featuring the(c) QGSP_BIC featuring the
BERT model LEP model

Longitudinal profiles: PointLikes

(a) BERT: valid for QGSP BERT (shown(b) LEP: valid for QGSP BIC (shown here), here) and FTFP_BERT QGS BIC and LEP

LEP

FTFP BERT

QGSP BERT

MIPs and Scattered events

Conclusions

- Interactions of hadrons in the SiW ECAL at energies from 2 GeV to 10 GeV are found and classified into 4 kinds, using energy deposition and high granularity
- Efficiencies to reconstruct the interaction layer within ± 2 layers are > 62 %
- Systematic effects have been checked and are small, O(1%) (muons, physics list, cuts)
- The CAN note is almost complete and ready for circulation within the collaboration

Backup slides

Efficiency to select events with one particle

Cuts against noise

Systematics due to the physics list

Efficiency of the MipFinder

Efficiencies to find the correct number of particles entering the ECAL

- Efficiencies: 99% with one track, 80% with two tracks (muons)
- 12% of irreducible background for overlaid muons (enter the same cell)

2D correlations between reconstructed and true layer

Horizontal axis = Reconstructed layer

Vertical axis = True (MC) layer (given by the endpoint of the primary particle)

Good at 10 GeV, more difficult at 2 GeV: smaller depositions, but fluctuations

Standard deviation: Reconstructed layer – True (MC) layer

Cuts against noise

- Efficiency (interaction fraction) and purity for each energies
- Calculated with different cuts on the minimum cell energy (mip cut)
- Not sensitive
- Error bars are systematics from (Ecut±1,Fcut±1)

Systematics due to physics lists

- Efficiency (interaction fraction) and purity are calculated for all physics lists
- Error bars are systematics due to (Ecut±1,Fcut±1)
- Differencies are
 < systematics due to
 (Ecut, Fcut)

