

ERSITE

PASCAL

R&D activity (a) pole MicRhAu dedicated to High Granularity Si-W Ecal

The CALORIC chip

Laurent Royer, J. Bonnard, S. Manen, P. Gay

LPC Clermont-Ferrand

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE PHYSIOLE DES

- **Electrical specifications of the readout electronics:**
 - Dynamic range of the signal delivered by a Si-diode : from MIP (4 fC) to 2500 MIPs (10 pC)
 - □ Level of noise limited to 1/10 MIP → SNR ≥ 10
 - **Error of Linearity:**
 - < 0.1 % up to 10 % of the dynamic range (1 pC)</p>
 - < 1% from 10 % and 100 % of the dynamic range</p>

1% duty cycle

- Axes of developments @ MicRhAu:
 - Synchronous (with beam) analog signal processing: shaping with Gated Integrators, latched comparators
 - **Fully differential architecture**, except for the Charge Sensitive Amplifier (CSA)
 - One low-power ADC attached to each channel
 - Use of a pure CMOS technology, no bipolar transistors

L.Royer- Calice meeting @ LLR - Feb. 2011

99% duty cycle

First prototype channel

Status report presented at Desy in July 2010

- A VFE channel performing the amplification, the filtering, the memorization and the digitalization of the charge from Si detector has been designed and tested.
 - Global Linearity better than 0.1 % (10 bits) up to 9.5 pC (2375 MIP).
 - **ENC = 1.8 fC (0.5 MIP)** with a single gain stage
 - □ Power consumption with power pulsing estimated to 25µW (no digital part).

- New chip designed and now ready to be sent to foundry (CMP run of 14th February)
- Technology AMS CMOS 0.35 μm
- Architecture of CALORIC based on the previous channel tested, with some improvements:
- \rightarrow Reduction of the power consumption of the CSA
- → Reduction of the noise of the amplifier of the Gated Integrator
- \rightarrow Increase of the analog memory depth to 16
- \rightarrow Fully power pulsed

- A High-Gain (about x 20) channel added to reach the MIP-to-noise ratio of 10.
- □ A discriminator indicates the dynamic range of the signal \rightarrow select the signal to be converted

The CALOrimetry Readout Integragted Circuit

□ A Trigger channel added to select events over the MIP

 \rightarrow The trigger signal determinates if the active memory cell is reset or the signal kept into memory

The CALOrimeter Readout Integrated Circuit

Global State Machine

Timing of the analog processing

Layout of CALORIC

Simulated performance

Gain-20 channel

INL < 0.1%

Gain-2 channel

INL < 1%

ENC (rms value) = 0.4 fC = 2400 e⁻ = MIP/10
with the High-Gain channel and C_{detector} = 30 pF

Power consumption

Evaluation using power pulsing with the ILC duty cycle:

→ 45 µW per channel

- □ The CALORIC chip is ready for fabrication.
- Simulated performance is in agreement with the requirements of Calice, except power consumption.
- □ The first measured performance is expected before summer.
- A multi-channel chip should be submitted for fabrication before the end of 2011
 - → compatible with Calice DAQ
 - → compatible with pinout of FEV board for test