MICROMEGAS Read-Out Chip

CALICE electronics meeting LLR-Palaiseau, France feb 9th, 2011

R. Gaglione and N. Seguin for the MICROMEGAS DHCAL team

Laboratoire d'Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3 FRANCE

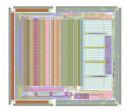
February 9th, 2011

Introduction

Tests at LAPP

Tests at LAL

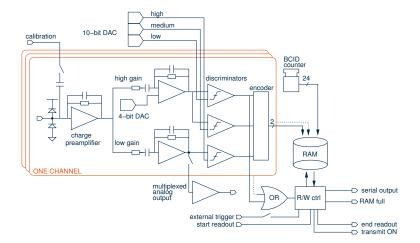
Introduction


Tests at LAPP

Tests at LAL

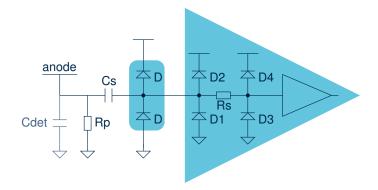
Introduction

MICROROC is a 64 channels integrated circuit packaged in TQFP160 intended to be used with MPGD-based DHCAL (MICROMEGAS or GEM).


- MICROROC is a fruit of the collaboration between LAPP and LAL/OMEGA based on the experience of previous ASICs (DIRAC and HARDROC) and on multiple test beam results
- Same Digital part as HARDROC2b, but charge preamplifier input stage + sparks protection [R. Gaglione] and slower shaping + 4-bit DAC offset correction per channel [N. Seguin]

 MICROROC is pin a pin compatible with the HARDROC2b to minimize boards modifications (see Cyril's talk).

gaglione@lapp.in2p3.fr feb 2010


Global architecture

Performances

- Technology: AustriaMicroSystem SiGe 0.35 µm
- Die size: 4.85×4.3 mm
- Dynamic range: 500 fC
- C_{det}: 80 pF
- Preamplifier gain: 2.38 mV/fC
- Noise rms: 1 fC at preamplifier output, 0.24 fC with 200 ns shaping
- Peaking times: 30, 50, 100 and 200 ns
- Minimum threshold: $\sim 2 \text{ fC}$

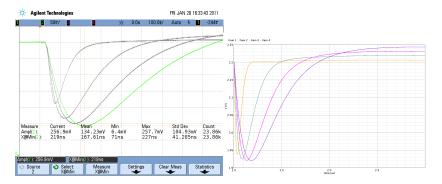
Protection against sparks

Rp=1 M Ω , Rs=10 Ω , Cs=470 pF, D are ON-Semiconductor NUP 4114, Dx are integrated fast diodes.

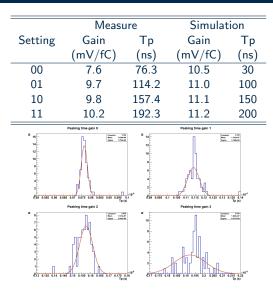

Introduction

Tests at LAPP

Tests at LAL

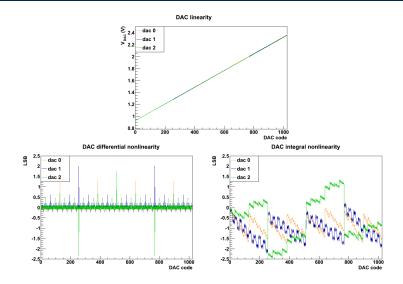

Test bench

The test board and labview software have been provided by $\mathsf{OMEGA}/\mathsf{LAL}.$

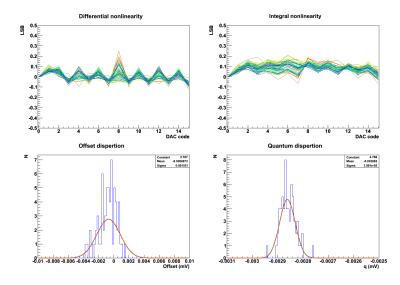

Waveforms

This is the output of high gain shaper, for the for settings (measure against simulation), with 25 fC charge injection (MIP-MPPV):

Good agreement between simulation and real behaviour.


Shapers

Good agreement between simulation and real behaviour.


Tests at LAPP

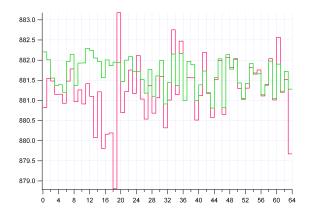
Thresholds DAC

For each DAC, the linearity is about 3 DACU.

Offset correction DAC

The linearity is better than 1 DACU and q=2.8 mV.

Tests at LAPP


Introduction

Tests at LAPP

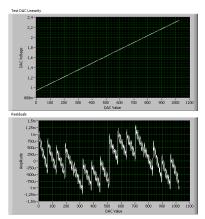
Tests at LAL

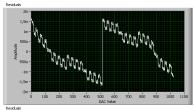
Pedestals compensation

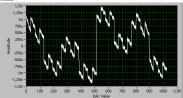
V_avg= 881.2 DACU V_sdev= 0.74 DACU V_avg= 881.6 DACU V_sdev= 0.4 DACU

Difference before and after correction, for high gain shaper: 2 factor on pedestal dispertion !

gaglione@lapp.in2p3.fr feb 2010

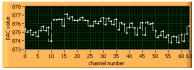

Tests at LAL

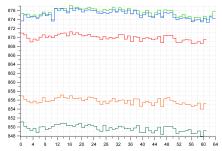

Threshold DAC tests


dac0 slope: 1.37 mV/*DACU* 942.06 mV to 2.34 V

dac1 slope: 1.38 mV/*DACU* 943.32 mV to 2.35 V

dac2 slope: 1.37 mV/*DACU* 943.35 mV to 2.34 V

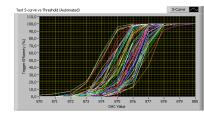



INL: \pm 1.5 mV

Scurves measurements Cdet=88 pF

50% estimation per channel

Pedestal: $V_avg = 875.6$; $V_sdev = 0.85$



pedestal, 1 fC,2 fC, 4 fC,5 fC

50% estimation per channel

2 fC: $V_avg = 869.9$; $V_sdev = 0.65$

Introduction

Tests at LAPP

Tests at LAL

Status

Prototypes tests

The chip has been sent in MPW run in June 2010 and 5 prototypes have been received in September 2011. The behaviour of the prototypes is very satisfaying.

Production

After prototypes tests in LAL and LAPP, an order has been placed for 350 chips. 341 chips have been received last week, and tests should be started very soon !

A production HR2b board has flashed with DIF firmware (see Guillaume's talk) and is used with LAPP Labview to test the 341 chips.