

ILD vertex detector powering

Orsay 2011 May 9
J.Baudot, for the IPHC group
baudot@in2p3.fr
x Detector specifications
x CMOS sensor VXD
x Power integration strategy
x Details on each area
x Summary

ILD vertex detector specifications

- Goal=impact parameter resolution
x Intrinsic sensor spatial resolution
\rightarrow high granularity: single point resolution $3 \mu \mathrm{~m}$
- $10^{8}(\mathrm{CMOS})$ to $10^{10}(\mathrm{FPCCD})$ pixels
x Multiple scattering

Require 0-suppression
\rightarrow power
\rightarrow Low material budget for the whole system

- few 0.1% X0 range per layer

Environment

$x \quad$ Large beam background hits
\rightarrow Dominates the data throughput, whatever the technology

- O(20) Mbits / train
x Inner region
\rightarrow Not much space
\rightarrow "adiabatic" operation important / thermal budget
\rightarrow Light structure important / material budget

The CMOS sensor-based VXD

Two geometries
x 3 double-sided layers $=$ baseline
\rightarrow Double-sided $=$ one support equipped with sensors on both sides
x 5 single-sided layers
x Same envelope
\rightarrow Radius coverage
\rightarrow Ladder-end support

layer	radius (mm)	width (mm)	length (mm)	\# ladders	\# sensors*
$\mathbf{1}$	$16 / 18$	11	125	14	168
$\mathbf{2}$	$37 / 39$	22	250	26	312
$\mathbf{3}$	$58 / 60$	22	250	40	480
total				$\mathbf{8 0}$	$\mathbf{9 6 0}$

* Numbers corresponding to current CMOS technology ($0.35 \mu \mathrm{~m}$) prototypes
\qquad

CMOS sensors for the VXD

Embedded functionalities

x In-pixel: pre-amplification pedestal suppression
x periphery: digitization + zero-suppression
$x \quad$ Readout strategy $=$ rolling-shutter
\rightarrow Only during train
$\rightarrow \mathrm{t}_{\text {integration }}=\mathrm{t}_{\text {read-out }}$
x Existing prototype:
$\rightarrow 2 \mathrm{~cm}^{2}, 0.6$ Mpixels, $\mathrm{t}=100 \mu \mathrm{~s}$ in CMOS $0.35 \mu \mathrm{~m}$
\rightarrow Development IPHC \& IRFU
\rightarrow Evolution toward CMOS $0.18 \mu \mathrm{~m}$

- Optimization / layer
x Inner layer: face large beam background
\rightarrow shortest readout-time $\sim 25 \mu s$
\rightarrow pixel pitch $16 \times 16 \mu \mathrm{~m}^{2}$
x Outer layers: optimize power
\rightarrow larger pitch ($35 \mu \mathrm{~m}$)
\rightarrow Keep resolution with 4 bits ADC
\rightarrow Detailed discussion in
Marc Winter's talk, tomorrow

Power pulsing sensor

Pulsing strategy

x Activity period ~ 2 to 4 ms over the 200 ms train
\rightarrow Estimated duty cycle range: $1 / 50$ to $1 / 100$
x For stability reasons, not all element switchable
\rightarrow Test started for the analog part
\rightarrow To be done for the digital circuitry

Assuming: $0.18 \mu \mathrm{~m}$ techno \& 1.8 V voltage \& continuous operatio					2-sided ladder switch. not-swi. total			whole detector switch. not-swi. total		
inner layer	power (V)	1,575	025	1,6	18,9	0,3	19,2	8 W	2 W	W
	current (A)	0,875	0,014	0,89	10,5	0,1	10,6			
ter	power (W)	0,490	0,010	0,5	88	0,1	6	382 A	A	90 A
Layers	current (A)	0,272	0,006	0,28	3,27	0,07	3,33			

Average power (integrating pulsing) 20 to 30 W
\rightarrow Air cooling probably good enough

Area 1: sensor integration

Cable structure

$x \quad 2$ metal layers in polyimide (1 to $2 \times 15 \mathrm{~cm}^{2}$) +6 sensors \rightarrow weight $\leq 5 \mathrm{~g}$
x Current $\leq 5 \mathrm{~A} /$ cable \rightarrow typical section for each aluminum power trace: $10 \mu \mathrm{~m} x \geq 2 \mathrm{~mm}$
\rightarrow limit the voltage drop to about 0.1 V over 15 cm
\rightarrow ~ 5% additional power dissipated
x Parallel powering assumed so far
\boldsymbol{x} Could include DC-DC converter chip at cable end \& regulators inside sensor
\rightarrow Material budget and heat cost?

\rightarrow Under
development within
the PLUME project:
DESY + IPHC +
U.Bristol + U.Oxford

This structure weight 0.6 \% of X0 (2010)

Target for 2011: 0.3\%

Area 1: power pulsing

Wire bonds

$x \quad$ Average current through powering wires $\sim 10 \mathrm{~mA}$
\rightarrow Small residual force in $B=4 T$ but vibrations possible
x Monolithic sensors are easy to handle
\rightarrow Possibility to embed in polyimide \& connect through metallization
\rightarrow IMEC+CMST \& CERN projects

Lorentz force on low mass cable

x Many "small" transverse traces
\rightarrow Residual force could reach few $\mathrm{g} \approx$ cable mass!
$x \quad$ Double-sided structure could be used to counter-balance the effect
\rightarrow Cable design with reverse current path on each side
$x \quad$ Switching sensors with some delay and not simultaneously \rightarrow reduce current
\rightarrow Require specific sensor functionalities

Area 2: intermediate cables

- Cables

x Length $\leq 10 \mathrm{~cm}$
x Low mass still required to preserve forward region
\rightarrow Metal = aluminum
\rightarrow Metal thickness limited
x Current @ 1.8 V: 5 to 10 A / ladder
\rightarrow One cable may serve several ladder, current >10 A ?
$\boldsymbol{\rightarrow} \leq 40$ such cables on each side of the VXD
x Higher voltage transport highly desirable
\rightarrow Require DC-DC converters at ladder end

Lorentz force

$x \quad$ Several Amps at switching on, transverse to B
\rightarrow Lateral forces
x Run along beryllium disk support structure
\rightarrow Cables could be fixed
x Material budget
$x \quad$ Power dissipated in cable
x Voltage drop

- Optimization to be done for conductor sizing

Area 3: power transport cables

Cable type

$x \quad$ Still inside the detector but not in fiducial volume \rightarrow copper allowed
x Weighting against \& heating the beam pipe

- Nominal voltage power transport
x At 1.8 V: current to transport in activity is $\sim 400 \mathrm{~A}$ (otherwise $\leq 10 \mathrm{~A}$)
x Requiring a voltage drop $<0.1 \mathrm{~V} \rightarrow$ section of conductor $\sim 0.8 \mathrm{~cm}^{2}$
x Total weight $\sim 7 \mathrm{~kg}$
$x \quad$ Power dissipated in conductors 40 W (with duty cycle 1/100 to 1/50)
\rightarrow Small compared to 700 W
- Higher voltage power transport
x Both weight and power dissipated decrease linearly with voltage
- Pulsing
x Longitudinal cable / B field \rightarrow no Lorentz force
x How fast can we switch on/off many Amps on 4 meters?

Technical solutions still to investigate:

- power supplies
- cables with high rise time if no DC-DC converters

Summary

- The CMOS sensor based ILD vertex detector
x is a 1000 sensors detector
x dissipates $\sim 700 \mathrm{~W}(\sim 400 \mathrm{~A})$ during train
x dissipates 20 to 30 W in average with power pulsing
- Power distribution
x studied on the ladder through dedicated R\&D (PLUME project)
x will benefit from DC-DC converters but not quantitatively estimated yet
x No safety/failure analysis yet
- Power pulsing
x Absolutely necessary for material budget (through cooling)
$x \quad$ Largely not yet experimented with prototypes
\rightarrow Starting with sensors
\rightarrow Some material ready for low mass cabels
$x \quad$ Potential mechanical issues need setup with large B field

