

ILD vertex detector powering

Orsay 2011 May 9

J.Baudot, for the IPHC group baudot@in2p3.fr

- **x** Detector specifications
- **x** CMOS sensor VXD
- **x** Power integration strategy
- **x** Details on each area
- **x** Summary

ILD vertex detector specifications

Goal=impact parameter resolution

- **x** Intrinsic sensor spatial resolution
 - → high granularity: single point resolution $3 \mu m$
 - · 10^{8} (CMOS) to 10^{10} (FPCCD) pixels
- **x** Multiple scattering
 - → Low material budget for the whole system
 - few 0.1% X0 range per layer

Environment

- **x** Large beam background hits
 - Dominates the data throughput, whatever the technology
 - O(20) Mbits / train
- **x** Inner region
 - ➔ Not much space
 - → "adiabatic" operation important / thermal budget
 - → Light structure important / material budget

Require 0-suppression → power						

ILD-VXD powering, 2011, May 9

The CMOS sensor-based VXD

Two geometries

- **x** 3 double-sided layers = baseline
 - Double-sided = one support equipped with sensors on both sides
- **x** 5 single-sided layers
- **x** Same envelope
 - ➔ Radius coverage
 - ➔ Ladder-end support

layer	radius (mm)	width (mm)	length (mm)	# ladders	# sensors*
1	16/18	11	125	14	168
2	37/39	22	250	26	312
3	58/60	22	250	40	480
total				80	960

* Numbers corresponding to current CMOS technology (0.35 μ m) prototypes

CMOS sensors for the VXD

Embedded functionalities

- **x** In-pixel: pre-amplification pedestal suppression
- **x** periphery: digitization + zero-suppression
- **x** Readout strategy = rolling-shutter
 - ➔ Only during train
 - \rightarrow t_{integration} = t_{read-out}
- **x** Existing prototype:
 - → 2cm², 0.6Mpixels, t=100µs in CMOS 0.35µm
 - → Development IPHC & IRFU
 - → Evolution toward CMOS 0.18 μ m

Optimization / layer

- **x** Inner layer: face large beam background
 - → shortest readout-time ~ 25 μ s
 - → pixel pitch 16x16 μ m²
- **x** Outer layers: optimize power
 - → larger pitch (35 µm)
 - → Keep resolution with 4 bits ADC

→ Detailed discussion in Marc Winter's talk, tomorrow

Power pulsing sensor

Pulsing strategy

- **x** Activity period ~ 2 to 4 ms over the 200 ms train
 - → Estimated duty cycle range: 1/50 to 1/100
- **x** For stability reasons, not all element switchable
 - ➔ Test started for the analog part
 - ➔ To be done for the digital circuitry

Assuming: 0.18µm techno. & 1.8 V voltage		sensor		2-sided ladder			whole detector			
& continuous operation		switch.	not-swi.	total	switch.	not-swi.	total	switch.	not-swi.	total
inner layer	power (W)	1,575	0,025	1,6	18,9	0,3	19,2	699 \/	10\//	700 W
	current (A)	0,875	0,014	0,89	10,5	0,17	10,67	000 VV	IZ VV	/00 //
outer Layers	power (W)	0,490	0,010	0,5	5,88	0,12	6	202 1	7 ^	200 4
	current (A)	0,272	0,006	0,28	3,27	0,07	3,33	502 A	/ A	290 A

Average power (integrating pulsing) 20 to 30 W

 \rightarrow Air cooling probably good enough

Power integration strategy

Area 1: sensor integration

Cable structure

- x 2 metal layers in polyimide (1 to 2 x15 cm²) + 6 sensors → weight \leq 5 g
- **x** Current \leq 5 A / cable \rightarrow typical section for each aluminum power trace: 10 μ m x \geq 2 mm
 - → limit the voltage drop to about 0.1 V over 15 cm
 - \rightarrow ~ 5 % additional power dissipated
- **x** Parallel powering assumed so far
- **x** Could include DC-DC converter chip at cable end & regulators inside sensor
 - ➔ Material budget and heat cost?

→ Under development within the PLUME project: DESY + IPHC + U.Bristol + U.Oxford

This structure weight 0.6 % of X0 (2010)

Target for 2011: 0.3%

Area 1: power pulsing

Wire bonds

- ✗ Average current through powering wires ∼10 mA
 - → Small residual force in B=4T but vibrations possible
- **x** Monolithic sensors are easy to handle
 - ➔ Possibility to embed in polyimide & connect through metallization
 - ➔ IMEC+CMST & CERN projects

Lorentz force on low mass cable

- **x** Many "small" transverse traces
 - → Residual force could reach few $g \approx$ cable mass!
- Double-sided structure could be used to counter-balance the effect
 - → Cable design with reverse current path on each side
- *x* Switching sensors with some delay and not simultaneously → reduce current
 - ➔ Require specific sensor functionalities

Top view 1^{st} trial of a MIMOSA embedded by IMEC

ILD-VXD powering, 2011, May 9

Area 2: intermediate cables

- x Length ≤ 10 cm
- **x** Low mass still required to preserve forward region
 - ➔ Metal = aluminum
 - ➔ Metal thickness limited
- x Current @ 1.8 V: 5 to 10 A / ladder
 - ➔ One cable may serve several ladder, current >10 A ?
 - → \leq 40 such cables on each side of the VXD
- *x* <u>Higher voltage transport highly desirable</u>
 - ➔ Require DC-DC converters at ladder end

Lorentz force

- **x** Several Amps at switching on, transverse to B
 - ➔ Lateral forces
- **x** Run along beryllium disk support structure
 - ➔ Cables could be fixed

- Optimization to be done for conductor sizing
 - **x** Material budget
 - **x** Power dissipated in cable
 - **x** Voltage drop

Area 3: power transport cables

Cable type

- \boldsymbol{x} Still inside the detector but not in fiducial volume \rightarrow copper allowed
- **x** Weighting against & heating the beam pipe

Nominal voltage power transport

- **x** At 1.8 V : current to transport in activity is \sim 400 A (otherwise \leq 10 A)
- **x** Requiring a voltage drop $< 0.1 \text{ V} \rightarrow \text{section of conductor} \sim 0.8 \text{ cm}^2$
- **x** Total weight ~ 7 kg
- **x** Power dissipated in conductors 40 W (with duty cycle 1/100 to 1/50)
 - ➔ Small compared to 700 W

Higher voltage power transport

x Both weight and power dissipated decrease linearly with voltage

Pulsing

- \boldsymbol{x} Longitudinal cable / B field \rightarrow no Lorentz force
- **x** How fast can we switch on/off many Amps on 4 meters?

Technical solutions still to investigate:

power supplies
cables with high rise time
if no DC-DC converters

The CMOS sensor based ILD vertex detector

- **x** is a 1000 sensors detector
- ★ dissipates ~ 700 W (~400 A) during train
- *x* dissipates 20 to 30 W in average with power pulsing

Power distribution

- **x** studied on the ladder through dedicated R&D (PLUME project)
- *x* will benefit from DC-DC converters but not quantitatively estimated yet
- **x** No safety/failure analysis yet

Power pulsing

- **x** Absolutely necessary for material budget (through cooling)
- **x** Largely not yet experimented with prototypes
 - ➔ Starting with sensors
 - ➔ Some material ready for low mass cabels
- **x** Potential mechanical issues need setup with large B field