Power Consumption of CMOS Sensors for an ILD Vertex Detector

M. Winter (PICSEL team of IPHC-Strasbourg) - coll. with IRFU-Saclay -

LAL/Orsay - 10 May 2011

Contents

• Sensor power consumption

- * Present power consumption (based on existing sensors)
- * Evolution expected from final sensor fabrication technology

• Sensor power pulsing

* Average power expected (not yet measured)

⊳ Caveates

- power estimates valid for ILC-500 only (3D sensors not discussed here)
- --- power pulsing will be studied/assessed in AIDA

Overview of Sensor Organisation

Sensor organisation :

- * functionnalities inside each pixel :
 - conversion of charge into electrical signal (e.g. voltage)
 - average noise (pedestal) subtraction
- * signal discrimination (in perspective of zero-suppression)
- * discriminator output encoding (sparsification with charge encoding
- \times data transmission logic \rightarrowtail connection with the outside world

• Specific aspects :

- * permanent/continuous signal sensing
 - \Rightarrow no dead time
- * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
 - \Rightarrow read-out restricted to 1 raw at a time
 - \Rightarrow power (pixel array) = power of 1 raw !!!
- -• ILD-VTX pixels \leq 83 times smaller than ATLAS HPS ...

CMOS sensors for the ILD-VTX

• Two types of sensors :

* Inner layers (≲ 300 cm²) : priority to read-out speed & spatial resolution
→ small pixels (16×16 / 80 µm²) with binary charge encoding
→ t_{r.o.} ~ 50 / 10 µs; σ_{sp} ≲ 3 / 5 µm
* Outer layers (~ 3000 cm²) : priority to power consumption and good resolution
→ large pixels (35×35 µm²) with 3-4 bits charge encoding
→ t_{r.o.} ~ 100 µs; σ_{sp} ≲ 4 µm

- **2-sided ladder concept** (see J.Baudot's talk) :
 - * R&D of PLUME collaboration (DESY-Oxford-Bristol-IPHC-FNAL)

(Pixelated Ladder using Ultra-light Material Embedding)

 \hookrightarrow material budget \lesssim 0.3 % X_0 (goal)

st square pixels (16imes16 μm^2) on internal ladder face (σ_{sp})

& elongated pixels (16×80 μm^2) on external ladder face (t_{r.o.})

 $\, \hookrightarrow \, \sigma_{sp} \lesssim$ 3 $\mu m \,$ & t $_{r.o.} \sim$ 10 μs

Pixel Array of ILD-VTX Sensor

- Main sensing and read-out micro-circuit elements :
 - * charge collection on sensing diode
 - * sensed charge conversion into signal (voltage)
 - * pre-amplification
 - * average noise (pedestal) subtraction (clamping)
 - ightarrow
 ightarro
- Power consumption of pixel array (0.35 μm process) :
 - ★ inner layers :
 - $\circ~\sim$ 1300 columns of 16 μm wide pixels
 - \circ two-sided read-out \Rightarrow 2600 columns/sensor
 - $ho
 ho
 ho\sim$ 520 mW/sensor

★ outer layers :

- $\circ~\sim$ 600 columns of 35 μm wide pixels
- \circ single-sided read-out \Rightarrow 600 columns/sensor
 - $ho
 ho
 ho\sim$ 120 mW/sensor

Peripheral Circuitry of ILD-VTX Sensor

• Main peripheral circuitry elements :

- st discriminators / ADCs : 300 / 500 μW /col.
- * bias DACs (discri. & ADC thresholds, V_{ref}, etc.) : O(1) mW/DAC
- st digital circuitry (zero-supp., sequencers, etc.) : \sim 150 μW /col.
- ★ memories (output buffers) : O(1) mW/Mbps
- * signal transmission (LVDS) : O(10) mW/channel

- Power consumption of peripheral circuitry (0.35 μm process) :
 - * discriminators / ADCs : 800 / 300 mW (in/out)
 - * bias DACs (discri. & ADC thresholds, V_{ref}, etc.) : 50 / 20 mW (in/out)
 - * digital circuitry (zero-suppression, sequencers, etc.) : 400 / 100 mW (in/out)
 - * memories (output buffers) : 200 / 50 mW (in/out)
 - * signal transmission (LVDS) : 200 / 50 mW (in/out)
 - ho
 ho
 ho inner layers : \sim 1650 mW/sensor
 - ightarrow
 igh

Instantaneous Power Consumption of Full ILD-VTX

• Sensor and ladder total power consumption (0.35 μm process) :

- * inner layer (\sim 2 cm²):
 - \circ sensor : \sim 500 (pixels) + 1700 (periphery) \simeq 2200 mW/sensor
 - \circ ladder : \sim 12 \times 2200 mW \simeq 26 W/ladder
- st outer layers (\sim 4 cm 2):
 - \circ sensor : \sim 100 (pixels) + 500 (periphery) \simeq 600 mW/sensor
 - \circ ladder : \sim 12 \times 600 mW \simeq 7 W/ladder
- ILD-VTX total power consumption (0.35 μm process) :

Double-layer	R _{in} /R _{out}	N_{lad}	N_{sens}	P_{diss}
DL-1	16/18 mm	14	168	\sim 400 W
DL-2	37/39 mm	26	312	\sim 200 W
DL-3	58/60 mm	40	480	\sim 300 W
TOTAL		80	960	\lesssim 900 W

• Caveates :

- * values based on existing sensor design not yet optimised for power consumption
- st values based on 0.35 μm process : final sensor will be fabricated in \leq 0.18 μm technology
- * increase of leakage current consecutive to irradiation not accounted for

Effect of Smaller Feature Size

• Evolve towards feature size << 0.35 μm :

 $* \mu$ circuits: smaller transistors, more Metal Layers, capacitors, ...

- Benefits :
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance
 - * large number of ML \Rightarrow reduced surface of peripheral circuitry, etc.
 - * faster read-out or lower power \Rightarrow chose between speed and power $\triangleright \triangleright \triangleright$
- Power consumption : ex. of 0.18 μm process (n ightarrow n+2)
 - * lower voltage (1.8 V instead of 3.3 V) \Rightarrow power \searrow
 - * exploit higher signal propagation frequency (memories) \Rightarrow power

- * digital circuitry \triangleright general (approximate) rule : $P = \alpha \cdot C \cdot V^2 \cdot f + I_{leak} \cdot V + \beta \cdot I_{sc} \cdot V$ $C \sim \text{feat.size}^2 \Rightarrow P \sim S_{feature}^2 \cdot V^2 \cdot f + ... \Rightarrow P_{digi}^{0.18} \simeq 0.1 \cdot P_{digi}^{0.35}$ at fixed frequency
- st analog circuitry (pixel array, discri., ADC) ightarrow power reduction more complicated to assess but $<< P_{digi}$ reduction
- \Rightarrow Total sensor dissipation : ~ 1600 mW/sensor(in) & ~ 500 mW/sensor(out) (0.35 μm values: 2200 & 600 mW)
 - \Rightarrow Total Instantaneous VTX Power : \lesssim 700 W (0.35 μm value: 900 W)

 $\triangleright \triangleright \triangleright$ Caveate : I_{leak} increase between 0.35 μm and 0.18 μm not accounted for

* **sensing:** 3-well, depleted sensitive volume, ...

Power Reduction from Power Pulsing

• Exploiting ILC beam time structure :

- $-\!\circ$ beam duty cycle \sim 1/200
- $-\infty$ ILD-VTX duty cycle needs to account for stable functionning of \sim 1,000 sensors
 - \equiv 400 Mpixels with \sim 10 T, 4 \cdot 10 5 discri. & 5 \cdot 10 5 ADC, 2 \cdot 10 4 DAC
 - \Rightarrow estimated duty cycle in the range 1/50 1/100 (\equiv sensors dissipate during 4 ms to 2 ms)

• Power pulsing :

- $-\infty$ Pixels : all switched off inbetween trains \Rightarrow 0 W
- Peripheral circuitry :
 - \circ all elements switched off inbetween trains except of discri. & ADC and bias DAC (tbc) \Rightarrow 0 W
 - $\circ~$ discri. & ADC (tbc): \sim 1 % of nominal dissipation
 - bias DAC on stand-by (needs optimisation) : 25 / 10 mW (in / out)
- ---- Average VTX power dissipation (for 2 and 4 ms active time around train) :
 - switchable components : 9 18 W
 - $\circ\,$ discri. & ADC : \sim 5 W
 - **DAC** : \sim 12 W (conservative)

ho ho ho ho Average power dissipated by full ILD-VTX \sim 20-30 W

SUMMARY – CONCLUSION

Power consumption of ILD-VTX based on CMOS sensors equipping double-layer geometry estimate :

- $-\!\circ$ based on existing CMOS (EUDET & STAR) sensors fabricated in 0.35 μm technology
- $-\!\circ$ optimising sensor architecture for \sim 10 μs time stamp in inner layer \Rightarrow 150 W overload
- $-\!\circ$ accounting for reduction expected from translation to 0.18 μm

\Rightarrow Total power consumption \lesssim 700 W

• Power pulsing :

- ---- Assumptions :
 - full power dissipation during 2 ms 4 ms
 - o all components can be switched off inbetween trains except potentially DAC, discri. & ADC
 - DAC, discri. & ADC can at least be put in stand-by
- • Average VTX power dissipation (0.18 μm techno.) :
 - switchable components: \le 15 W DAC: \sim 10 W (conservative assumption) discri. & ADC: \le 5 W
 - \Rightarrow Average power dissipated by full ILD-VTX \sim 20–30 W
- Power per surface unit (normalised to active unit) :
 - $-\!\circ$ during trains : \sim 800/100 mW/cm 2 in inner/outer layers
 - $-\infty$ inbetween trains : \sim 15/3 mW/cm 2 in inner/outer layers (conservative assumption)

\Rightarrow Air flow seems sufficient to extract all power dissipated (tbc)