

### Positron Source Parameters

#### Daresbury, 10 February, 2011 S. Riemann, DESY

1

# **Positron Source Components**

- Undulator
- Target
- OMD
- γ collimator
- Acceleration, bunch compression
- Spin rotation
- Auxiliary source
- Remote handling
- Dumps, shielding

### **Normal Operation**

İİĻ



Figure taken from J. Clarke, AAP Review

#### **Positron Yield**

ilc





ilc iic

### Helical undulator

|                                              | units | RDR               | SB2009        |  |
|----------------------------------------------|-------|-------------------|---------------|--|
| e+ per bunch at IP                           |       | 2 x 1010          | 1 to 2 x 1010 |  |
| Bunches per pulse                            |       | 2525              | 1312          |  |
| Normalized horizontal emittance @ IP         | mm-mr | 10                | 10            |  |
| Normalized vertical emittance @ IP           | mm-mr | 0.04              | 0.035         |  |
| Energy e- beam                               | GeV   | 150               | 125(150)-250  |  |
| Undulator period                             | cm    | 1.15              |               |  |
| Undulator strength                           |       | 0.92              |               |  |
| Active undulator length                      | m     | 147 Max. 231      |               |  |
| Field on axis                                | Т     | 0.                | 86            |  |
| Beam aperture                                | mm    | 5.                | 85            |  |
| Photon energy (1 <sup>st</sup> harm. cutoff) | MeV   | 10.06 28 (@250 Ge |               |  |
| Photon beam power                            | kW    | 131 Max. 102      |               |  |
|                                              |       |                   | (at 150 GeV)  |  |
| Distance undulator center to target          | m     | 500               |               |  |

Yield Calculations Using RDR Undulator Parameters (137 meter and FC without photon collimators )

W. Gai, BAW-2

| Drive<br>beam<br>energy | Yield  | Polarization | Required<br>Undulator Length<br>for 1.5 Yield | Emittance<br>Growth X/Y for<br>1.5 Yield* | Energy Spread<br>from Undulator for<br>1.5 Yield |
|-------------------------|--------|--------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------|
| 50 GeV                  | 0.0033 | 0.42         | Very long                                     |                                           |                                                  |
| 100 GeV                 | 0.2911 | 0.39         | 685 m                                         |                                           |                                                  |
| 150 GeV                 | 1.531  | 0.34         | 137 m                                         | ~ -2.5%/-1.6%                             | 0.17%                                            |
| 200 GeV                 | 3.336  | 0.27         | 61 m                                          |                                           |                                                  |
| 250 GeV                 | 5.053  | 0.23         | 40 m                                          | ~ -1%/-0.4%                               | 0.18%                                            |

• No Quads misalignment included

- Change undulator parameters to optimize
  - Yield and polarization
  - Emittance growth
  - Reduce heat load on target and collimator

### Undulator Parameter Upgrade

Assumptions:

- Length of undulator: 231m
- Drive beam energy: 100GeV
- Target: 0.4X0, Ti
- **Photon Collimation: None**
- Drift to target: 400m from end of undulator
- OMD:FC, 14cm long, ramping up from 0.5T to over 3T in 2cm and decrease adiabatically down to 0.5T in 12cm.
- Probably aperture will be relative small; impact on drive beam to be studied.



High K, short period, 100GeV drive beam

W. Gai, BAW-2



İİĻ

- Optical Matching Device
- Photon Collimator



## ir

### **Positron Target**

|                              | units     | RDR         | SB2009            |  |
|------------------------------|-----------|-------------|-------------------|--|
| Target material              |           | Ti-6%Al-4%V |                   |  |
| Target thickness             | r.l. / cm | 0.4 / 1.4   |                   |  |
| Target power adsorption      | %         | 8           | 8 (for E=?)       |  |
| Incident spot size on target | mm, rms   | >1.7        | >1.2<br>(250 GeV) |  |
| Diameter target wheel        | m         | 2           | 2                 |  |
| Rotation speed               | m/s       | 100         | 100               |  |

- Is target thickness optimal?
- What is the incident spot size?
  - No Gaussian profile
- Material parameters (heat load, shock wave,...)
- Immersed target  $\rightarrow$  eddy currents:
  - Extrapolation to 8 kW at 2000 rpm in B=1T (I. Bailey et al.)

### Target Prototype Experiment

Test eddy currents and mechanical stability Cockroft Institute Bailey et al., THPEC033, IPAC2010



#### **Measurements**

 Torque associated with eddy current production in target wheel depending on

 Immersion depth
 Magnetic flux densities

 All measurements taken for revolution rates <1800 rpm in fields up to 1.5 T

#### Results

- Measured torque values correspond to heat loads up to 4.7 kW for fields of 1T at 1500rpm
- Extrapolation to 8 kW at 2000 rpm

Should be within the capabilities of water-cooled ILC target wheel

### **Power deposition in target**

• Dependence on drive beam energy for a fixed collimator

W. Gai, BAW-2

| 1.5 yield / 3e10 e+<br>captured | Ti target ( $\rho$ =4.5 g/cm^3) |                                      |         |                     |       |  |
|---------------------------------|---------------------------------|--------------------------------------|---------|---------------------|-------|--|
|                                 | Thickness for                   | Energy                               | Average | Peak energy density |       |  |
|                                 | highest yield<br>(X0)           | yield deposition power (J/bunch) (KV |         | (J/cm^3)            | (J/g) |  |
| 150GeV,FC (137 m)               | 0.4                             | 0.72                                 | 9.5     | 348.8               | 77.5  |  |
| 250GeV, FC (40 m)               | 0.4                             | 0.342                                | 4.5     | 318.8               | 70.8  |  |
| 150GeV, QWT (231 m)             | 0.4                             | 1.17                                 | 15.3    | 566.7               | 126   |  |
| 250GeV, QWT (76 m)              | 0.4                             | 0.61                                 | 8.01    | 568.6               | 126.4 |  |

- Limit for peak energy density in Ti?
- Shock wave studies (S. Hesselbach, L. Fernandez-Hernando et al.): see <u>https://znwiki3.ifh.de/LCpositrons/TargetShockWaveStudy</u>

# Rotating Vacuum Seal Tests

• Test at LLNL:

http://ilcagenda.linearcollider.org/getFile.py/access?contribId=494& sessionId=83&resId=0&materialId=slides&confId=4507





### Evaluating commercial ferrofluidic seals

- Leakage
- vibrations

Altered layout

- diagnostics setup, developing drawings
- acquire LLNL ES & H approval for operating plan

## Optical Matching Device (OMD)

#### W. Gai, BAW-2

| OMD                                                                       | Capture efficiency |
|---------------------------------------------------------------------------|--------------------|
| Immersed target, AMD<br>(6T-0.5T in 20 cm)                                | ~30%               |
| Non-immersed target, flux concentrator<br>(0-3.5T in 2cm, 3.5T-0.5T 14cm) | ~26%               |
| 1/4 wave transformer<br>(1T, 2cm)                                         | ~15%               |
| 0.5T Back ground solenoid only                                            | ~10%               |
| Lithium lens                                                              | ~29%               |

- Beam and accelerator phase optimized for each OMD
- Distance between target and OMD (QWT, FC) influences yield and also polarization

### ANL ¼ wave solenoid simulations

İİL

Heat load can be high  $\rightarrow$  protection, cooling?



### Flux concentrator

LLNL design (Gronberg, Piggott): <u>http://indico.desy.de/getFile.py/access?contribId=24&sessionId=1&</u> <u>resId=0&materiaIId=slides&confId=3061</u>

ΪŪ



### **Positron Yield and Polarization**



# Undulator + photon collimator

W. Gai, BAW-2

| Drive beam<br>energy | Energy loss<br>per 100m | Energy loss<br>for 1.5 yield | yield | polarization |
|----------------------|-------------------------|------------------------------|-------|--------------|
| 100 GeV              | ~900 MeV                | n/a                          | 0.054 | 0.72         |
| 150 GeV              | ~2 GeV                  | ~8.9 GeV                     | 0.78  | 0.60         |
| 200 GeV              | ~3.6 GeV                | ~5.3 GeV                     | 2.37  | 0.47         |
| 250 GeV              | ~5.6 GeV                | ~4.7 GeV                     | 4.09  | 0.36         |

- 231m RDR undulator,
- <sup>1</sup>/<sub>4</sub> wave transformer,
- radius of collimator: 0.17cm

### **Photon Collimator**

Final Collimator design still missing (Length, iris, material, cooling)



Collimator designs considered:

 I. Bailey, L. Zang, A. Wolski, <u>http://www.ippp.dur.ac.uk/export/sites/IPPP/LCsources/Photo</u> <u>nCollimator/MO6RFP093.pdf</u>

 A. Mikhailichenko, EPAC2006, <u>http://accelconf.web.cern.ch/accelconf/e06/PAPERS/MOPLS</u> <u>105.PDF</u>

### **Collimator Designs**

• Bailey, Wolski, Zang:

IIL



Mikhailichenko





# **Positron polarization and SB2009**

Energy deposition in photon collimator

- Rough estimate of total energy deposition (E<sub>dep</sub>) and peak energy deposition density (PEDD) in photon collimator (normalization 1.5e+/e-), using AMD
- Simplified collimator design:

(similar to Bailey, Zang, Wolski)



|                                                   | E=150GeV           |      | E=250GeV         |      |
|---------------------------------------------------|--------------------|------|------------------|------|
|                                                   | 2820 bunches/pulse |      | 1312 bunches/pul | se   |
| R <sub>coll</sub> [mm]                            | _                  | 2.3  | 2                | 1.35 |
| P[%]                                              | 34                 | 45   | 30               | 45   |
| E <sub>dep</sub> [kW]                             | —                  | 19.3 | 2.7              | 10.7 |
| PEDD [J/(g·pulse)]                                | —                  | 290  | 38.5             | 200  |
| ∆T <sub>max</sub> [K]/pulse<br>in <b>tungsten</b> | —                  | 2150 | 290              | 1440 |

Ushakov

#### :lr

### Summary Parameters

| Parameter                             | RDR                          | SB2009                       | Units |
|---------------------------------------|------------------------------|------------------------------|-------|
| e+ per bunch at IP                    | 2 x 1010                     | 1 to 2 x 1010                |       |
| Bunches per pulse                     | 2525                         | 1312                         |       |
| e+ energy (DR injection)              | 5                            | 5                            | GeV   |
| DR transverse acceptance              | 0.09                         | 0.09                         | m-rad |
| DR energy acceptance                  | ±0.5                         | ± 0.5                        | %     |
| e- drive beam energy                  | 150                          | 125-250                      | GeV   |
| e- energy loss in undulator           | 3.01                         | 0.5-4.9                      | GeV   |
| Undulator period                      | 11.5                         | 11.5                         | mm    |
| Undulator strength                    | 0.92                         | 0.92                         |       |
| Active undulator length               | 147 (210 after pol. Upgrade) | 231 max.                     | m     |
| Field on axis                         | 0.86                         | 0.86                         | Т     |
| Beam aperture                         | 5.85                         | 5.85                         | mm    |
| Photon energy (1 <sup>st</sup> harm.) | 10                           | 1.1 (50 GeV)<br>28 (250 GeV) | MeV   |
| Photon beam power                     | 131                          | Max: 102 at 150 GeV          | kW    |
| Target material                       | Ti-6%Al-4%V                  | Ti-6%Al-4%V                  |       |
| Target thickness                      | 14                           | 14                           | mm    |
| Target power adsorption               | 8                            | 8                            | %     |
| PEDD in target                        |                              |                              |       |
| Dist. Undulator center - target       | 500                          | 500                          | m     |
| e+ Polarization                       | 34                           | 22                           | %     |



• • •

### **Spin Rotation**



•

### **Spin Rotation**

Spin rotation

Ø 6.00 x 145m

# K. Moffeit et al., SLAC-TN-05-045 → Spin rotation and fast reversal before DR (5 GeV)

İİĻ



### **Accelerator elements**

TABLE 2.3-3

Total number of components in the Positron Source.

| • | RDR: |
|---|------|
| • | RDR: |

| Magnets                  | #   | Instrumentation              | #   |
|--------------------------|-----|------------------------------|-----|
| Dipoles                  | 157 | BPM x,y pairs                | 922 |
| NC quads                 | 871 | BPM readout channels         | 922 |
| SC quads                 | 51  | Wire scanners                | 29  |
| Sextupoles               | 32  | Beam length monitors         | 2   |
| NC solenoids             | 38  | Profile monitors             | 7   |
| SC solenoids             | 2   | Photon profile monitors      | 3   |
| NC correctors            | 871 |                              |     |
| SC correctors            | 102 | RF                           | #   |
| Kickers                  | 15  | NC L-band structures         | 30  |
| Septa                    | 4   | 1.3 GHz SC cavities          | 200 |
| SC undulator cryomodules | 42  | 1.3 GHz cryomodules          | 26  |
| OMD                      | 2   | 1.3 GHz klystrons/modulators | 37  |

- And SB2009 ???
- Y. Batygin: Spin rotation and energy compression in the ILC Linac-to-Ring positron beamline

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 570, Issue 3, 21 January 2007, Pages 365-373, <u>http://www.sciencedirect.com/science/article/B6TJM-4MBJX10-</u> <u>3/2/668bf016f9f824104547b5f6d723adda</u>

 Zhou, Batygin, Nosochkov, Sheppard, Woodley; Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source. SLAC-PUB-12239. <u>http://www-</u> public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=slac-pub-12239



- Auxilary Source
- Beam Dumps
- Radiation Aspects

### **Auxiliary Source Mode**



## Beam dumps in Central Region

- Abort dump upstream undulator
- Photon beam dump
- Low energy e- dump
- 500MeV e- dump (aux. source)
- High energy beam dump

## Beam dumps for e+ source: nothing new since RDR

#### Positron Source Meeting, § Daresbury, Oct. 2009

IIL



- Estimations of dose rates for different OMD options give similar results (the highest rate is for QWT)
- Residual dose rates have been calculated for ordinary and heavy concretes:
  - 1 m thick ordinary concrete shielding is not sufficient,
  - heavy concrete shielding with thickness  ${\sim}80$  cm should be enough

Radiation

#### **Concrete Shielding Sketch**

provided by Norbert Collomb, Neil Bliss (Science & Technology Facilities Council)



A. Ushakov (DESY)

### Summary

• Undulator:

IIL

- ok, except new improved parameter considerations
- Collimator
  - Final design missing
  - Problem: heat load (shock waves?)
- Target
  - Vacuum seal tests
  - Shock wave studies
  - Remote handling update?
- OMD
  - FC design ⇔ LLNL
- Accelerating structures
- Spin rotation and helicity reversal
- Radiation aspects, remote handing
- Dumps



ilc iic

## **Positron System Schematic Layout (SB2009)**



Table 4.7.1: RDR parameter plane ranges compared to SB2009 specifications (TF refers to Travelling Focus). This table is reproduced from Section 2.4.

|                                       |                           | RDR  |         | SB2009 |       |         |
|---------------------------------------|---------------------------|------|---------|--------|-------|---------|
|                                       |                           | min  | nominal | max    | no TF | with TF |
|                                       | x 10 <sup>10</sup>        | 1    | 2       | 2      | 2     | 2       |
| Bunch population                      |                           |      |         |        |       |         |
|                                       |                           | 1260 | 2625    | 5340   | 1312  | 1312    |
| Number of bunches                     |                           |      |         |        |       |         |
|                                       | ns                        | 180  | 369     | 500    | 530   | 530     |
| Linac bunch interval                  |                           |      |         |        |       |         |
|                                       | μm                        | 200  | 300     | 500    | 300   | 300     |
| RM bunch length                       |                           |      |         |        |       |         |
|                                       | mm-mr                     | 10   | 10      | 12     | 10    | 10      |
| Normalized horizontal emittance at IP |                           |      |         |        |       |         |
|                                       | mm-mr                     | 0.02 | 0.04    | 0.08   | 0.035 | 0.035   |
| Normalized vertical emittance at IP   |                           |      |         |        |       |         |
|                                       | mm                        | 10   | 20      | 20     | 11    | 11      |
| Horizontal beta function at IP        |                           |      |         |        |       |         |
|                                       | mm                        | 0.2  | 0.4     | 0.6    | 0.48  | 0.2     |
| Vertical beta function at IP          |                           |      |         |        |       |         |
|                                       | nm                        | 474  | 640     | 640    | 470   | 470     |
| RMS horizontal beam size at IP        |                           |      |         |        |       |         |
|                                       | nm                        | 3.5  | 5.7     | 9.9    | 5.8   | 3.8     |
| RMS vertical beam size at IP          |                           |      |         |        |       |         |
| Vertical disruption parameter         |                           | 14   | 19.4    | 26.1   | 25    | 38      |
| Fractional RMS energy loss to         | %                         | 1.7  | 2.4     | 5.5    | 4     | 3.6     |
| beamstrahlung                         | 24 0 4                    |      |         |        |       |         |
| Luminosity                            | x 10 <sup>°</sup> cm⁻∠s⁻1 |      | 2       |        | 1.5   | 2       |