Topological Clustering and Local Hadron Calibration

Particle Flow Meeting

Sven Menke, MPP München

15: Feb 2011, CERN

- Motivation
- Topological Clusters
 - cluster making
 - noise thresholds
 - cluster splitting

Cluster Moments

Local Hadron Calibration

- classification
- cell weighting
- out-of-cluster corrections
- dead material corrections
- jet level corrections

Conclusions

Motivation

- Aim is to have best possible response to hadrons and electrons in physics channels like $t\bar{t} \rightarrow Wb Wb \rightarrow I\nu j_b jjj_b$
 - pseudo event display in $r \phi$ and r - z illustrates this
 - use calorimeter objects calibrated to stable particle level to form jets which point back to primary partons

MC@NLO tt Event (semileptonic)

ATLAS Calorimeters

- Layout of the ATLAS Calorimeters
- EM LAr-Pb accordion calorimeter
 - Barrel (EMB): $|\eta| < 1.4$
 - End-cap (EMEC):
 1.375 < |η| < 3.2
- Hadron calorimeters
 - Barrel (Tile): Scint.-Steel $|\eta| < 1.7$
 - End-cap (HEC): LAr-Cu $1.5 < |\eta| < 3.2$

Forward calorimeter (FCal) $3.2 < |\eta| < 4.9$

- FCal1: LAr-Cu
- FCal2&3: LAr-W

Electromagnetic vs. Hadronic Showers

An electromagnetic shower

- consists of visible EM energy only
- is very compact ($X_0 \simeq 2 \text{ cm}$)
- can be simulated with high precision since mostly electromagnetic processes need to be calculated
- allows high accuracy calibration (see talk by Stathes for details)

A hadronic shower

- consists of EM and hadronic energy (some invisible)
- is very large ($\lambda_0 \simeq$ 20 cm)
- is difficult to simulate since it involves many QCD processes
- limits the accuracy for calibration (mostly due to large fluctuations)
- The examples show 50 GeV showers of an electron (left) and a pion (right) in iron

Hadron Calorimetry in ATLAS

- A hadronic shower consists of
 - EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
 - visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25%)
 - invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25 %)
 - escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- hadronic calibration has to account for the invisible and escaped energy and deposits in dead material and ignored calorimeter parts

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

From a Geant4 simulation of EMEC and HEC:

- EM energy strongly anti-correlated with visible non-EM energy
- visible non-EM energy strongly correlated with invisible energy
- need to separate EM part of the shower from the non-EM part
- apply a weight to the non-EM part to compensate invisible energy

How to separate EM fraction from non-EM fraction?

- $X_0 \ll \lambda \simeq 20 \, \mathrm{cm}$
- high energy density in a cell denotes high EM activity
- low energy density in a cell corresponds to hadronic activity
- apply weights as function of energy density

Topo Clusters and Local Had. Calib.

Calorimeter Reconstruction

A tower is a group of cells (or even a group of fractions of cells) in a fixed $\Delta \eta \times \Delta \phi$ grid over some or all samplings

- contains the sum of cell (fraction) energies and the center of the grid square (η and ϕ) as members
- in use in ATLAS are 65536 LAr EM only LArTowers with $\Delta\eta imes\Delta\phi=0.025 imes2\pi/256$
- and 6400 CaloTowers including all calorimeters with with $\Delta\eta imes\Delta\phi=$ 0.1 imes 2 $\pi/64$
- A cluster is a group of cells (or even fraction of cells) formed around a seed cell
 - is the main reco object for calorimetry
 - with either a fixed size in $\Delta \eta \times \Delta \phi$ (sliding window used for electrons/photons)
 - or variable borders based on the significance of the cells (topo cluster used for hadrons/jets/MET)
 - contains lots of data members based on weighted cell members for energy, position and shape

Clusters

Cluster algorithms need to serve multiple purposes

- suppress noise (electronics noise and pile-up)
- keep electromagnetic showers in one cluster
- separate multiple signals which are close by
- work on very different sub-systems

Plots on the right and below show large variations in η for

• electronics noise at high luminosity

$$(\mathcal{L}=10^{34}\,{
m cm^{-2}s^{-2}})~(\sim10-10^3\,{
m MeV})$$

• total noise at high luminosity

$$(\sim 2-10^4 {
m MeV})$$

• cell volume (
$$\sim 2 \cdot 10^4 - 3 \cdot 10^8$$
, mm³)

Cluster Making

- form clusters around seed cells with $|E_{\text{seed}}| > 4(\sigma_{\text{elec-noise}} \oplus \sigma_{\text{pile-up-noise}})$
- expand clusters around neighbor cells with $|E_{neigh}| > 2\sigma$
- include perimeter cells with $|E_{cell}| > 0\sigma$
- merge clusters if they share a neighbor cell
- expansion is driven by neighbors in 3D: usually 8 neighbors in the same layer (2D) plus cells overlapping in η and φ with central cell in next and previous layer (just 2 if granularity would be the same)

Cluster Splitting

- search for local maxima in cell energy with *E_{seed}* > 500 MeV in all clustered cells in EM-samplings (HAD-samplings secondary)
- re-cluster around local maxima with same neighbor driven algorithm but no thresholds and no merging
- cells at cluster borders are shared with energy and distance dependent weights

Noise Bias > $|E_{cell}| > 2 \sigma_{noise}$

- this is o.k. for no expected signal (no bias, reasonable resolution)
- also o.k. for large signals since they will be accepted (including their noise)
- a bias $O(-0.6 \sigma_{\text{noise}})$ is introduced for small signals and tails of large signals (i.e. $E_{\text{cell}} = O(\sigma_{\text{noise}}))$ which makes the bias signal dependent
- The plot on the right illustrates this bias.
- Shown is the expected distribution of a small signal (1.5 σ_{noise}) in the presence of noise
- The shaded area shows the region where the measured value is replaced by 0
- The blue line shows the average reconstructed value

True value ($\sigma_{\sf noise}$)	Bias ($\sigma_{\sf noise}$)
0.0	0.00
1.0	-0.60
1.5	-0.69
2.0	-0.60
3.0	-0.23
4.0	-0.04

Topo Clusters and Local Had. Calib.

Topological Cluster Example

- Iook at di-jet MC sample including electronics noise with activity in the forward region
- plots show |E_{cell}| on a color coded log-scale in MeV in the first (EM) FCal sampling for one event

 \triangleright 2 σ cut is removing cells from the signal region

- \blacktriangleright 4 σ cut shows seeds for the cluster maker
- after clustering all cells in the signal regions are kept
- cluster splitter finds hot spots

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

Topological Clusters

Number of relevant clusters per particle

- there can be more than 1 cluster in a cone around the original pion direction
- but the number of relevant clusters (fraction of energy) is small
- top plot shows calibration hit energy fraction in the 3 leading clusters for charged pions vs. the pion energy in the barrel
- bottom plot shows the same for neutral pions
- for E > 2 GeV more than 90% or the energy are in the 2 leading clusters (charged pions)
- for neutral pions significant energy only in leading 2 clusters and only in 1 if photons can not be resolved

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

Particle Flow Meeting, 15. Feb 2011, CERN

Cluster Moments

- shape variables calculated from the positive cells in a cluster
- first a principal value analysis is run on the cluster cells
 - provides centroid 3 major axes of the shower
- angles of the major axis w.r.t. IP-shower-center direction are calculated
- other shape quantities defined by moments of the form

$$\langle x^n \rangle = \frac{1}{E_{\text{norm}}} \times \sum_{\{i | E_i > 0\}} E_i x_i^n$$
, with

 $E_{\text{norm}} = \sum_{\{i | E_i > 0\}} E_i.$

• typical choices for x: $\rho = E/V$, r, λ

11 most popular moments are on AOD

- LATERAL normalized second lateral moment
- LONGITUDINAL normalized second longitudinal moment
- SECOND_R the width squared of the cluster
- SECOND_LAMBDA the length squared of the
- CENTER_LAMBDA the cluster center depth in the calorimeter
- CENTER_MAG the distance IP cluster center
- FIRST_ENG_DENS the first moment of $\rho = E/V$
- ENG_FRAC_MAX the ratio of the hottest cell energy over the cluster energy
- ISOLATION fraction of cells neighbouring the perimeter cells of the cluster which are not included in other clusters
- ENG_BAD_CELLS energy stored in cells flagged as bad
- N_BAD_CELLS number of cells flagged as bad

other important moments available on ESD are

- CENTER_X/Y/Z the position of the cluster
- ENG_FRAC_EM the fraction of cluster energy in EM samplings
- ENG_FRAC_CORE the fraction of cluster energy in the leading cells in every sampling
- DELTA_PHI/THETA/ALPHA angular deviations of the shower axis from IP-cluster-center axis
- ENG_CALIB_* 17 of the 22 new moments of calibration hit energies associated to the cluster (in simulations with calibration hits; these are also on AOD)

Cluster Moments > Comparisons to Barrel CTB 2004 (H8) P. Speckmayer

- look at cluster moments for 20 GeV pions from 2004 barrel test beam data (black points) and compare to G4 simulation (dashed blue lines)
- differences in ⟨η⟩ might be due to simplified beam trajectories in simulations
 Compare also with η-reweighted distributions (red)
- shower depth and energy density in good agreement
- $\langle r^2 \rangle$ shows no agreement at all

- very important to use only moments which are well described
- validation of default athena algorithms with test beam data is crucial

Cluster Moments > Comparisons to Endcap CTB 2004 (H8) J. Erdmann

200 GeV pions from 2004 endcap test beam data in the FCal region (solid green histogrms) and G4 QGSP (blue) and QGSP_BERT (red) simulations)

best description for λ_{center} and $\langle \rho \rangle$

- largest deviations in LATERAL and LONGITUDINAL
- QGSP_BERT slightly better than QGSP

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

Cluster Moments $\blacktriangleright \sqrt{s} = 900 \, \text{GeV}$ data

- Averages of currently used moments in local hadronic calibration from MinBias data and MC
 - FIRST_ENG_DENS
 - CENTER_LAMBDA
 - ISOLATION
- Averages of moments we'd like to use in local hadronic calibration from MinBias data @ 900 GeV and MC
 - SECOND_LAMBDA
 - LONGITUDINAL
 - SECOND_R
 - LATERAL
- Caveat: average cluster energies are small – see plots on the right for *E* (top) and *E*_⊥ (bottom)
- We need moment comparisons for higher energetic clusters
- In the following: plots on top (bottom) lin (log) scale

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

Cluster Moments FIRST_ENG_DENS

- this moment is used in the classification
- data slightly less dense than MC
- more so in most inner FCal region
- could indicate some very soft physics missing in MC
- Andrey sees larger discrepancy in TB

Topo Clusters and Local Had. Calib.

Cluster Moments CENTER_LAMBDA

- this moment is used in the classification and out-of-cluster corrections
- in general very good agreement between data and MC
- showers are a little bit deeper in the calo in data
- > no specific η -region
- could indicate too compact phsyics list in MC

Cluster Moments ISOLATION

- this moment is used in the out-of-cluster corrections
- in general very good agreement between data and MC
- except for forward region
- data is less isolated than MC
- could be missing soft QCD processes in MC

Cluster Moments SECOND_LAMBDA

- in general very good
 agreement between data and
 MC
- except central barrel region where data has significantly longer showers
- Iargest effect for $|\eta| < 1$
- could be noise description/treatment in Tile

Cluster Moments LONGITUDINAL

- potentially good moment to separate em/had
- in general very good agreement between data and MC
- bigger deviations in crack regions
- data shows flatter showers than MC

Cluster Moments SECOND_R

surprisingly good agreement between data and MC

- except in central barrel
- overshooting data for $|\eta| < 1.5$ hints again at Tile

Cluster Moments ► LATERAL

- like LONGITUDINAL moment potentially good moment to separate em/had
- in general very good agreement between data and MC
- bigger deviations in crack regions
- data shows flatter showers than MC

Classify and calibrate topo clusters to hadron-level

- Classification
 - use shower shape variables (cluster moments) like shower depth and (weighted) energy density of the cell constituents
 - em showers are less deep and have higher average energy density than had showers
 - make a cut on probability ratio to observe a neutral over a charged pion in a given bin derived from single pion simulations (right plot)

Calibration

- cell weights are applied to clusters classified as hadronic
- derive cell weights from Geant4 true energy (calibration hits) including invisible energy and absorber deposits and reconstructed cell energy for each η region and layer:
 - $w_i = \langle E_{\text{true}} / E_{\text{reco}} \rangle, i = \text{bin}#(E_{\text{cluster}}, E_{\text{cell}} / V_{\text{cell}})$
- example weights in main sampling of EM calorimeter for $2.0 < |\eta| < 2.2$

 Correct for dead material and out-of-cluster deposits for clusters classified as hadronic and electromagnetic (corrections differ)

Local Hadron Calibration > Energy Corrections

Cell weights

 account for the non-compensation of the calorimeters

Out-Of-Cluster Corrections

 recover lost energy inside the calorimeters due to noise thresholds

Dead-Material Corrections

 recover lost energy outside the calorimeters

Cell Weights

can be defined non-ambiguously from calibration hits and reconstructed cell energy

Out-Of-Cluster & Dead-Material corrections

- need assignment algorithm of nearby calibration hits to clusters
- can correct only those cases where a signal cluster is present
 - jets need additional corrections for lost low energetic particles

- use separate charged and neutral single pion samples and fill all found clusters in 2D histograms in $\log_{10}\lambda$ and $\log_{10}\langle \rho \rangle$
- define individual weights for each bin i:

$$w^{i}_{\pi^{0}} = N^{i}_{\pi^{0}}/N_{\pi^{0}}
onumber \ w^{i}_{\pi^{\pm}} = N^{i}_{\pi^{\pm}}/N_{\pi^{\pm}}$$

- take a-priori probability to get a neutral pion instead of a charged pion of 1/3
- combine separate weights bin by bin to create 2D probability table:

$$p_{\pi^0}^{i} = rac{w_{\pi^0}^{i}}{w_{\pi^0}^{i}+2w_{\pi^\pm}}$$

S. Menke, MPP München

classify each cluster as em that falls into a bin with $p_{\pi^0}^i > 0.5$

Since we have typically more than one cluster per pion and the ratio is different for charged and neutral pions, each cluster enters with a weight $E_{CalibHit} / \sum E_{CalibHit}$, such that every pion (or event) contributes with total weight 1 and the leading cluster contributes most

... Classification and Calibration Probability-Weighted

Corrections

- After the classification clusters were treated either as electromagnetic or as hadronic
- This is o.k. for very clear assignments (em-probabilities above 90% or below 10%)
- Often clusters are classified much closer to 50%
- Here similar clusters could end up with completely different weights depending on few percent-points in the probability
- The classification now stores the moment EM_PROBABILITY (ESD only) and subsequent weighting steps can use it to gradually switch from em to had weights:
 - $\blacktriangleright w = p_{\text{EM}} w_{\text{EM}} + (1 p_{\text{EM}}) w_{\text{HAD}}$
- This is default since 15.5.4

Plots produced by G. Pospelov with

CaloLocalHadCalib/GetLCSinglePionsPerf

- Linearity/resolution for π^{\pm} (left) and π^{0} (right) in 15.5.4
- Examples are for 1.4 $< |\eta| <$ 1.6 (top) and 2.0 $< |\eta| <$ 2.2 (bottom)
- Other regions show similar tendency
- good linearity above 10 GeV for charged pions
- small overshoots for neutral pions in regions with large corrections
- improved resolution especially in crack regions

Performance of single pions $\blacktriangleright \pi^{\pm/0}$ Linearity

Performance of single pions $\blacktriangleright \pi^{\pm/0}$ **Resolution**

Topo Clusters and Local Had. Calib.

Topo Clusters as Input to Jets

Jet reconstruction and calibration can be divided in 4 steps

- 1. calorimeter tower/cluster reconstruction
- 2. jet making
- jet calibration from calorimeter to particle scale
- 4. jet calibration from particle scale to the parton scale

Jet Input

- Cluster particle correspondance
 - 1.6 stable particles for 1 cluster @ $E_T > 0$
 - 1.6 stable particles for 1 cluster @ $E_T > 1$ GeV
 - 2.2 stable particles for 1 cluster @ E_T > 10 GeV (mainly due to merged photons from π⁰ → γγ)

Topo Clusters and Local Had. Calib.

Jet Input > Number of Constituents

Number of Constitutents per jet

- CSC book; di-jet MC; Kt6 jets
- stable particles vs. topo clusters vs. towers
- clusters much closer to truth than towers

Jet Input > Jet Mass

- Jet Mass for the same choice of jet inputs
 - CSC book; di-jet MC;
 Kt6 jets
 - stable particles
 vs. topo clusters
 vs. towers
 - again cluster jets much closer to truth than towers

Jet Input > Jet Shape

- Jet Shape (i.e. radial energy flow)
 - ATL-PHYS-INT 2009-099
 - stable particles
 vs. topo clusters
 vs. topo towers
 - again cluster jets closer to truth than towers
 - but topo towers

 already better than
 towers (unfortunately
 plain towers not
 plotted)

Constituents based Jet Level Corrections (Method)

Idea:

- Monte Carlo based Jet Level Corrections
- What does a jet know about its missing constituents?
- Jet shape/sub-structure information:
 - \Rightarrow jet moments (JM) based on jet constituents can be used
- Matched truth/reco jet pairs: $\Delta R_{min}^{match} < 0.3 \& p_T^{true} > 20 GeV$
- Isolated reco jets: $\Delta R_{min}^{iso} > 1.0$ w.r.t. clostest reco or truth jet
 - \Rightarrow anti- K_T 4 jets
 - \Rightarrow inversion method used for energy bins
- The jet moment used here is:

$$E_{T,frac,cl(E_{T,cl}<1 \text{ GeV})} = \frac{1}{E_{T,jet}} \sum_{cl(E_{T,cl}<1 \text{ GeV})} E_{T,cl}$$

A. Jantsch (MPI für Physik)

Constituents Based Jet Level Corrections

HCW 2009 2 / 6

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

æ

Constituents based Jet Level Corrections (Method)

Weights:
$$\left\langle \frac{E_{truth}}{E_{reco}} \right\rangle$$
 in bins of log10(E_{reco}), $|\eta| \& E_{T,frac,cl}(E_{T,cl} < 1 \text{ GeV})$

Topo Clusters and Local Had. Calib.

Particle Flow Meeting, 15. Feb 2011, CERN

QCD DiJet (J0-J8)

S. Menke, MPP München

Topo Clusters and Local Had. Calib.

Particle Flow Meeting, 15. Feb 2011, CERN

- Topo Clusters preserve particle picture, suppress noise and follow showers
- Cluster moments allow classification
- Local Hadron Calibration based on cell weights, cluster shapes
- Modular approach to treat one effect at a time
 - non-compensation
 - Iosses due to noise thresholds
 - Iosses due to non-instrumented material
- Clusters as input to jets preserve jet shapes
- Allow for constituent based jet energy scale corrections
- Suitable for quark and gluon jets

Next steps:

- Provide systematic error tool for clusters and LCTopo jets
- Particle ID (CalibrationHit "knows" its parent particle)
- Try jet MC to derive Local Had Calib weights instead of Single Pion MC