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Lectures

• Linac basics (two lectures)

• Basic theory to understand the lattice design (two lectures)

• Static imperfections and their beam-based correction

• Dynamic imperfections and their beam-based correction

• Multi-bunch effects

• Parameter optimisation and summary
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This Lecture

• Introduction

- motivation, basic recipe to design your own linac

• Single particle dynamics basics

- matrix formalism, first basic matrices and FODO cell, Twiss parameters, accel-
eration

• Multi particle (single bunch) basics

- emittance, impact of energy spread, single bunch beam break-up

• Imperfections

• Simulations
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Why is the Main Linac Important?

• The two main parameters are important for the physics experiments

- collision energy

- luminosity, a measure for the rate of events at the interaction point

• The main linac is the main component to accelerate the beam

⇒ it is responsible for the beam energy

- the main relevant parameter is the accelerating gradient

• The main linac is the main consumer of power

⇒ it is an important limitation for the beam current

- the luminosity depends on the beam current

• The main linac is one of the main sources of emittance growth

⇒ the emittance is a parameter that affects the luminosity

• There is a third parameter which the main linac affect very much, the cost

- is the society willing to pay for it?
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Impact on Luminosity

• The luminosity can be written as

L = HD
N2nbfr

4πσ∗
xσ

∗
y

HD a factor usually between 1 and 2, due to the beam-beam forces
N the number of particles per bunch
nb the number of bunches per beam pulse (train)
fr the frequency of trains
σ∗

x and σ∗
y the transverse dimensions at the interaction point

L = HD
N

4πσ∗
x

1
√

βyǫy
γ

Nnbfr = HD
N

4πσ∗
x

1
√

βyǫy
γ

ηPwall

• We will see that σx,y can be written as the function of two parameters

σx,y =

√

√

√

√

√

βx,yǫx,y

γ
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Main Linac Lattice Design

• Which elements are needed?

- accelerating structures

it is obviously the purpose of the main linac to provide acceleration

goal is usually to have the largest possible fraction of the linac filled with
accelerating structures (fill factor)

- guiding magnets

otherwise the beam will not pass

we will use quadrupoles

- beam position monitors (BPMs)

otherwise we do not see what the beam does

needed to correct imperfections

- some correctors

because life is not perfect and needs to be corrected
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parameter symbol ILC CLIC
centre of mass energy Ecm 500 GeV 3000 GeV

luminosity L 2 · 1034 cm−2s−1 6.5 · 1034 cm−2s−1

luminosity in peak L0.01 1.4 · 1034 cm−2s−1 2 · 1034 cm−2s−1

initial energy E0 15 GeV 9 GeV

final energy Ef 250 GeV 1500 GeV

charge per bunch N 2 · 1010 3.72 · 109

bunch length σz 300 µm 44 µm

initial/final horizontal emittance ǫx 8400 nm/9400 nm 600 nm/660 nm

initial/final vertical emittance ǫy 24 nm/34 nm 10 nm/20 nm

bunches per pulse nb 2625 312

distance between bunches nb 369 ns 0.5 ns

repetition frequency fr 5 Hz 50 Hz
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ILC Lattice

• In the ILC constant
quadrupole spacing is
chosen

• The phase advance per
cell is constant

• The phase advance is dif-
ferent in the two planes

- reduces some coupling
effects between the two
planes
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CLIC Lattice Design

• Used β ∝
√

E, ∆Φ = const

- balances wakes and
dispersion

- roughly constant fill fac-
tor

- phase advance is cho-
sen to balance between
wakefield and ground
motion effects

• Preliminary lattice

- made for N = 3.7 × 109

- quadrupole dimensions
need to be confirmed

- some optimisations re-
main to be done

• Total length 20867.6m

- fill factor 78.6%
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• 12 different sectors used

• Matching between sectors using 7 quadrupoles to allow
for some energy bandwidth
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CLIC Fill Factor

• Want to achieve a constant fill factor

- to use all drive beams efficiently

• Scaling f = f0

√

E/E0 yields

Lq ∝
E
√

E
E0

∝
√

E

using a quadrupole spacing of L = L0

√

E/E0 leads to

Lq

L
∝

√
E√
E

∝ const

⇒ The choice allows to maintain a roughly constant fill factor

⇒ It maximises the focal strength along the machine
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Design Requirements

• How do I check that a lattice design is a good one?

we will try to find an optimum solution later but first let us understand the criteria

• Test emittance growth of a perfect beam in the perfect machine

⇒ emittance growth must be small

- if not improve lattice

• Test a beam with initial jitter in a perfect machine

⇒ beam must remain stable and relevant emittance must remain small

- if beam is not stable redesign lattice (stronger focusing), reduce current or
change structure

• Test beams in machines with realistic static imperfections

⇒ the emittance growth must be small

- if not either lattice must be relaxed or alignment people must be pushed into
R&D

• Test emittance growth in a machine with realistic dynamic imperfections

⇒ the emittance growth must remain small

- if not either lattice must be relaxed or R&D on stabilisation is required

• Interaction with experts on RF, magnets, instrumentation, alignment and stability

- put together what is considered reasonable by them



Main Linac Design Process

• Interactive process with interplay between

- accelerating structure design

- lattice design

- beam parameters

- hardware specifications which impact feasibility and cost

• Let us start with the lattice designers job

- assume that we have a specific structure

- beam parameters are given (except bunch length)

• Steps

- choose lattice design type

- adjust lattice parameters to have a stable beam

- determine specifications for imperfections
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Required Knowledge

• Single particle dynamics and the required formalism

• Multi-Particle Effects

- particles at different energies

- a bunch in the presence of wakefields

• Impact of static imperfections

- origin of imperfections

- methods to mitigate impact of imperfections

• Impact of dynamic imperfections

- origin of imperfections

- methods to mitigate impact of imperfections

• Multi-bunch effects
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Coordinate Systems

• We use two frames, the laboratory frame and the beam frame

• The nominal direction of motion of the beam is called s in the laboratory frame, the
beam moves toward increasing s

• The same direction is called z in the beam frame, with smaller z moving ahead of
particles with larger z

• The transverse dimensions are x in the horizontal and y in the vertical plane, in
both coordinate systems

• People use different systems so find out what they talk about
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Single Particle Dynamics: Transfer Matrices
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Particle Coordinates and Matrix Notation

• In one dimension one can describe a particle by

∂x

∂s
= x′ ∂x′

∂s
= f(s, x, x′)

• Linear case can be described as
∂x

∂s
= x′ ∂x′

∂s
= f(s)x + g′(s)

• This leads to

x′′ − f(s)x = g′(s)

• This can always be solved in the following form






x

x′





 = M(s)







x0

x′
0





 +







G(s)

g(s)







In most cases g′ = 0:






x

x′





 = M(s)







x0

x′
0






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Matrix Notation

• The transfer of a particle through the linac can be described by a matrix multipli-
cation

~xf = M~xi

• For each element i a transfer matrix can be calculated Mi

• A sequence of the linac from element k to element m can be represented as

Mk→m = Mm−1Mm−2 . . . Mk+1Mk

• This is close to the way the tracking of particle is implemented in simulation codes

• Note: the tranfermatrices are often also written as R
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Simple Example

• Let us look at a simple example to determine the tranfer matrix

• A drift can be described by

x′(s) = x′
0

x(s) = x0 + sx′
0

this is equivalent to the following matrix

Mdrift =







1 L

0 1







This transfer-matrix is also valid for BPMs
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Field of a Quadrupole

• The field is designed to be

Bx(x, y) = B0y By(x, y) = B0x

• The Lorentz force is then

~F = q(~v × B) = q















vyBs − vsBy

vsBx − vxBs

vxBy − vyBx















we approximate vx = vy = 0 and use Bs = 0

~F = q















−vsBy

vsBx

0















= qcB0















−x

y

0















changing the field direction yields

~F = qcB0















x

−y

0















⇒ A quadrupole focuses in one direction and defocuses in the other

D. Schulte, 6th Linear Collider School 2011, Main Linac A1 18



Transfer Matrix of a Quadrupole

• A quadrupole (focusing plane)

x′′ + kx = x′′ + |k|x = 0

MQF =









cos
(√

kL
)

1√
k

sin
(√

kL
)

−
√

k sin
(√

kL
)

cos
(√

kL
)









• A quadrupole (defocusing plane)

x′′ + kx = x′′ − |k|x = 0

MQD =











cosh
(√

|k|L
)

1√
|k|

sinh
(√

|k|L
)

−
√

|k| sinh
(√

|k|L
)

cosh
(√

|k|L
)











• Assuming a thin lens quadrupole one calculates L → 0, kL = K = 1/f

MQF =







1 0

−K 1





 MQD =







1 0

K 1







MQF =







1 0

− 1
f 1





 MQD =







1 0
1
f 1






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The FODO Lattice

• Each cell of a FODO lattice consists of
a focusing and a defocusing quadrupole
and two drifts

• For simplicity use the thin lens approximation for quadrupoles

MQD =







1 0

K 1





 MQF =







1 0

−K 1





 MD =







1 L

0 1







• The transfer matrix from the centre of one focusing quadrupole to the centre of the
next focusing quadrupole is then

MFODO =







1 − K2L2/2 L(2 + KL)

−K2L/2(1 − KL/2) 1 − K2L2/2







or

MFODO =







1 − L2/2f 2 L(2 + L/f)

−L/(2f 2(1 − L/2f)) 1 − L2/(2f 2)






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Calculation of the FODO Cell

MFODO = MQF/2MLMQDMLMQF/2

MFODO =







1 0

−K/2 1













1 L

0 1













1 0

K 1













1 L

0 1













1 0

−K/2 1







MFODO =







1 0

−K/2 1













1 L

0 1













1 0

K 1













1 − KL/2 L

−K/2 1







MFODO =







1 0

−K/2 1













1 L

0 1













1 − KL/2 L

K/2(1 − KL) 1 + KL







MFODO =







1 0

−K/2 1













1 − K2L2/2 L(2 + KL)

K/2(1 − KL) 1 + KL







MFODO =







1 − K2L2/2 L(2 + KL)

−K2L/2(1 − KL/2) 1 − K2L2/2






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Single Particle Dyanmics: Twiss Parameters

Sorry, this is a bit tough, but very important
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Reminder Hill’s Equation

x′′(s) + K(s)x(s) = 0

Defining

φ(s) =
∫ s

0

1

β(s′)
ds′

We find the solution
x(s) =

√

ǫβ(s) cos (φ(s) + φ0)

and

x′(s) =

√

√

√

√

√

ǫ

β(s)







β′

2
cos (φ(s) + φ0) − sin (φ(s) + φ0)







β has to fulfill
β′′β

2
− β′2

4
+ Kβ2 = 1

Two new parameters are defined

α = −β′

2
γ =

1 + α2

β

β, α and γ are called Twiss parameters
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Phase Space Representation

• Particle position and angle
at one point of the lattice
is defined by an amplitude
(action) that is preserved
and its Twiss parameters

x(s) =
√

ǫβ(s) cos (φ(s) + φ0)

x′(s) =

√

√

√

√

√

ǫ

β(s)







β′

2
cos (φ(s) + φ0) − sin (φ(s) + φ0)







• All particles on the ellipse
have the same action

-(ε/β)1/2

0

(ε/β)1/2

-(εβ)1/2 0 (εβ)1/2

x’

x

-α/βx
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Transformation into Normalised Phase Space

• We first need to remove the correlation
between x and x′

for this we use






1 0
α
β

1







• Then we normalise the amplitudes






1√
β

0

0
√

β







-(ε/β)1/2

0

(ε/β)1/2

-(εβ)1/2 0 (εβ)1/2

x’

x

-α/βx

• Both actions together






1√
β

0

0
√

β













1 0
α
β

1





 =









1√
β

0
α√
β

√
β









• Compare to Hill’s equation
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Testing Solutions of Hill’s Equation







xN

x′
N





 =









1√
β

0
α√
β

√
β



















1√
β(s)

√

ǫβ(s) cos (φ(s) + φ0)

α√
β

√

ǫβ(s) cos (φ(s) + φ0) −
√

β
√

ǫ
β sin(φ + φ0)











⇒






xN

x′
N





 =







√
ǫ cos(φ + φ0)

−√
ǫ sin(φ + φ0)







⇒






xN

x′
N





 =
√

ǫ







cos(φ + φ0)

− sin(φ + φ0)







⇒ Not a surprise

• In normalised phase space the particle is characterised by a single-particle emit-
tance ǫ and the phase φ0

- we could also replace ǫ by the action J with ǫ = 2J
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Trajectory Along the Machine

• In normalised phase space only the phase changes (no external force)






xN(s2)

x′
N(s2)





 =







cos(φ(s2) − φ(s1)) sin(φ(s2) − φ(s1))

− sin(φ(s2) − φ(s1)) cos(φ(s2) − φ(s1))













xN(s1)

x′
N(s1)







• Phase advance is given by

φ(s) =
∫ s

0

1

β(s′)
ds′

• Very useful to study impact of perturbations

• Can consider a complex amplitude

xN = re(A exp(iφ0)) x′
N = im(A exp(iφ0))

we will use that later
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Transformation from Normalised Phase Space

• We first undo the amplitude normalisation






√
β 0

0 1√
β







• Then we add the correlation






1 0

−α
β

1







-(ε/β)1/2

0

(ε/β)1/2

-(εβ)1/2 0 (εβ)1/2

x’

x

-α/βx

• Then we put both together we obtain the inverse of the other transfer matrix






√
β 0

− α√
β

1√
β






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Periodic Solutions for FODO Lattice

• We aim to find a periodic solution for the beta-function of the FODO lattice

- “matched solution”

• We use the transfer matrix into the normalised coordinates, some phase advance
and a transformation back into real coordinates assuming the same Twiss param-
eters at both points

Mperiod =







√
β 0

− α√
β

1√
β













cos µ sin µ

− sinµ cos µ















1√
β

0
α√
β

√
β









=







cos µ β sin µ

− 1
β sinµ cos µ







• The periodic solutions for the beta-function can be found by solving

β2 = −m1,2/m2,1
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Periodic Solutions for FODO Lattice (cont)

• Using

MFODO =







1 − K2L2/2 L(2 + KL)

−K2L/2(1 − KL/2) 1 − K2L2/2





 Mperiod =







cos µ β sin µ

− 1
β

sin µ cos µ







• Solving

β2 =
L(2 + K/L)

K2L/2(1 − KL/2)

yields

β̂ =
2

K

√

√

√

√

√

√

1 + KL/2

1 − KL/2

for the beta-function in the defocusing quadrupole one finds

β̌ =
2

K

√

√

√

√

√

√

1 − KL/2

1 + KL/2
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Periodic Solutions for FODO Lattice (cont)

• Using

MFODO =







1 − K2L2/2 L(2 + KL)

−K2L/2(1 − KL/2) 1 − K2L2/2





 Mperiod =







cos µ β sin µ

− 1
β

sin µ cos µ







• The phase advance ∆φ obviously is given by

cos µ = 1 − K2L2

2

with the solution
sin

µ

2
=

KL

2

D. Schulte, 6th Linear Collider School 2011, Main Linac A1 31



FODO Cell with Different Quadrupole Strength

• The focusing and defocusing quadrupole do not need to have the same strength

• In this case find

cos µ1 = 1 + K2L − K1L − K1K2L
2

2
and

cos µ2 = 1 + K1L − K2L − K1K2L
2

2

• This is stable if |1 + K2L − K1L − K1K2L
2

2 | < 1 and |1 + K1L − K2L − K1K2L
2

2 | < 1

• Such a lattice is used in the ILC case (µx = 60◦ and µy = 75◦)

- different phase advance in the two planes reduces coupling of resonant effects
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Evolution of Twiss Parameters

The twiss parameters between the quadrupole centres can be calculated using






β2 −α2

−α2 γ2





 = M1→2







β1 −α1

−α1 γ1





MT
1→2

Here γ is the third Twiss parameter

γ =
1 + α2

β

In the following, I will not use it to avoid confusion

• Example: evolution in a drift






1 L

0 1













β0 −α0

−α0 γ0













1 0

L 1





 =







β − 2αL + γL2 −α + γL

−α + γL γ







if we start with α = 0 we find β = β0 + L2

β0

• Note: from symmetry α = 0 in the quadrupole centres
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Evidence

• We calculate the change of Twiss parameters for a small distance with constant
K:







β2 −α2

−α2 γ2





 =







1 δ

−Kδ 1













β1 −α1

−α1 γ1













1 −Kδ

δ 1





 (1)

=







1 δ

−Kδ 1













β1 − α1δ −α1 − Kδβ1

−α1 + γ1δ γ1 + Kδα1





 (2)

=







β1 − 2δα1 + δ2γ1 −α1 + δγ1 − Kδβ1 + Kδ2α1

−α1 + δγ1 − Kδβ1 + Kδ2α1 γ1 + Kδα1 + Kδα1 + K2δ2β1





(3)

• Now we calculate the derivative using






β2 −α2

−α2 γ2





−






β1 −α1

−α1 γ1







δ

This yields for limδ→0

β′ =
β2 − β1

δ
= −2α1

and
α′ =

α2 − α1

δ
= −γ1 + Kβ1
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Evidence (cont.)

• We can compare the matrix results

β′ = −2α1

to the definition of α:
β′ = −2α

and we can compare the result for α′

α′ = −γ + Kβ

to Hills equation:
β′′β

2
− β′2

4
+ Kβ2 = 1

this can be written as
−α′β − α2 + Kβ2 − 1 = 0

and

α′ = −1 + α2

β
+ Kβ

which results in
α′ = −γ + Kβ
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Single Particle Dyanmics: Acceleration
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Transfer Matrix with Acceleration

• The inner part of an accelerating structure (assume constant and static electric
field G that points parallel to s)

The transverse angle can be calculated using the conservation of the transverse mo-
mentum

x′(s) = x′(0)
E0

E0 + eGs
(4)

(5)

Simply integration yields the equation for the position

x(s) = x(0) +
ln

(

1 + eG
E0

s
)

eG
E0

x′(0) (6)

This yields the matrix

Macc,in =

















1 L
ln
(

1+eG
E0

L
)

eGL
E0

0 E0

E0+
eGL
E0

















and replacing eGL/E0 = δ we find

Macc,in =







1 L ln(1+δs)
δ

0 1
1+δ






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Accelerating Structure End Fields

• Accelerating structure end fields are important

- often wrong in textbooks

• As exercise: calculate the thin lens end-field kick of an accelerating structure

- assume a homogeneous longitudinal electric field in the structure

- use Gauss law and assume no charge inside the cylinder
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Solution

• the flux through a circle with radius r is

Φl = Gπr2

• The flux through the mantle of the cylinder must be the same size but opposite
sign

Φ⊥ =
∫ s2

s1

G⊥2πrds = −Φl

• The transverse deflection is given by

∆x′ =
∫ s2

s1

eG⊥ds
1

E

• Hence, we find

∆x′ = −eGπr2

2πr

1

E
= −eG

2E
x
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Full Transfer Matrix

• Now we add the transverse deflection to the structure

Macc =







1 0

− δ
2L(1+δ) 1













1 L ln(1+δ)
δ

0 1
1+δ













1 0

− δ
2L

1







Macc =









1 − 1
2
ln (1 + δ) L ln(1+δ)

δ

−δ ln(1+δ)
4L(1+δ)

1+1

2
ln(1+δ)

1+δ









For δ ≪ 1

Macc ≈






1 − 1
2δ L

(

1 − 1
2δ
)

0 1 − 1
2
δ







⇒ Taking into account end fields makes the transfer matrix of the accelerating struc-
ture look more like a drift that shrinks the transverse beam size and divergence
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Normalised Phase Space Revisited

• We used








1√
β

0
α√
β

√
β









to go into a normalised phase space. With acceleration the ellipse size is changing
(remember we did not use the canonical variables)

• So we need instead to use
√

γ









1√
β

0
α√
β

√
β









and for the transformation back

1
√

γ







√
β 0

− α√
β

1√
β







D. Schulte, 6th Linear Collider School 2011, Main Linac A1 41



Multi-Particle Dynamics
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Beam Size

• A beam consists of many particles with coordinates ~xi

• We need to describe the statistical properties of these particles

• A convenient method is to use the sigma-matrix (which should have been called
sigma-square-matrix)

Σ =







〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉







which can be calculated from a matrix X representing the beam

X =
1√
n

(

~x1 ~x2 . . . ~xn

)

this allows to calculate
Σ = XXT

• The transfer of this ensemble through the machine can be easily calculated

X2 = MX1

⇒ Σ2 = X2X
T
2 = MX1(MX1)

T = MX1X
T
1 MT = MΣ1M
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Emittance

• We define the projected geometric emittance with the help of the sigma-matrix

ǫ2 = det(Σ)

• If we assume a Gaussian beam, the area of the ellipse described by one sigma is
πǫ

• In a linac it is easier to use the normalised emittance

ǫN = γǫ

this value does not change with acceleration

• In this lecture we will always use the normalised emittance, without the index

• It should be noted that different definitions for the emittance exist

- we use the projected emittance

- but one could remove correlations before

• We usually define the emittance of a single bunch but in some cases we can also
use the multi-pulse emittance, the overly of consecutive pulses
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Beam Representation with Emittance

• We can represent a beam as

Σ =







〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉







• For Gaussian beams we can also use

Σ =







βǫ/γ −αǫ/γ

−αǫ/γ γT ǫ/γ







Here, the Twiss parameter is named γT to distinguish it from the Lorentz-factor γ
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Energy Spread

• If we do not run at the crest
of the RF we can compen-
sate the longitudinal single
bunch wakefields

• But we are still left with
some energy spread

⇒ need to understand the
impact of the lattice de-
sign -0.018
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Filamentation

• Using

sin
µ

2
=

KL

2
and

K =
E0

E
K0 =

1

1 + δ
K0

we can calculate the phase advance difference as

sin





µ0 + ∆µ

2



 =
KL

2(1 + δ)

we develop the left hand side

⇒ sin
(µ0

2

)

cos





∆µ

2



 + cos
(µ0

2

)

sin





∆µ

2



 =
KL

2(1 + δ)

we approximate both sides

⇒ sin
(µ0

2

)

+ cos
(µ0

2

) ∆µ

2
≈ sin

µ0

2
(1 − δ)

this yields
⇒ ∆µ ≈ −2 tan

(µ0

2

)

δ

• In CLIC we have roughly 200 betatron oscillations and µ = 1.26 and 2 tan µ/2 ≈ 1.45

⇒ A gradient difference of initial energy and gradient of one percent leads to a phase
difference of 170◦
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Beta-Functions

In a similar fashion we can calculate the difference in beta-function

β̂

β̂0

=

2
K

√

1+KL/2
1−KL/2

2
K0

√

1+K0L/2
1−K0L/2

⇒ β̂

β̂0

=
1

1 + δ

√

√

√

√

√

√

1 + KL(1 + δ)/2

1 + K0L/2

√

√

√

√

√

√

1 − K0L/2

1 − KL(1 + δ)/2

⇒ β̂

β̂0

=
1

1 + δ

√

√

√

√

√

√

1 + δ(K0L/2) − (1 + δ)(K0L/2)2

1 − δ(K0L/2) − (1 + δ)(K0L/2)2

⇒ β̂

β̂0

≈ 1

1 + δ





1 +
K0L/2

1 − (K0L/2)2
δ







and similarly for β̌

⇒ β̌

β̌0

≈ 1

1 + δ





1 − K0L/2

1 − (K0L/2)2
δ







⇒ Beta-function do not vary strongly
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Final Beam with Energy Spread

• The final beam ellipses
at different energies look
quite similar

- plot shows all beam el-
lipses in ±3σz

⇒ the resulting emittance
growth is negligible

- one of the reasons the
FODO lattice is so nice -0.015
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-0.005

 0

 0.005
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Beam Stability and BNS Damping

• Transverse wakes act as
defocusing force on tail

⇒ beam jitter is exponen-
tially amplified

• BNS damping prevents
this growth

- manipulate RF phases
to have energy spread

- take spread out at end

structure quad

0
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120

0 200 400 600 800 1000 1200 1400

ε y
 [n

m
]
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Two-Particle Wakefield Model

• Assume bunch can be represented by two particles and constant K(s) = 1/β2

- second particle is kicked by transverse wakefield

- initial oscillation

x′′
1 +

1

β2
x1 = 0 x′′

2 +
1

β2
x2 =

Ne2W⊥
PLc

x1

x1 = x0 cos





s

β





x′′
2 +

1

β2
x2 = x0

Ne2W⊥
PLc

cos





s

β





• Solution is simple with an ansatz

x2 = x0 cos





s

β



 +







x0Ne2W⊥β

2E
s





 sin





s

β





⇒ Amplitude of second particle oscillation is growing

⇒ The bunch charge and length matter as well as the lattice

⇒ Have a closer look into wakefields
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BNS Damping solution

• First particle performs a harmonic oscillation

x1(s) = x0 cos





s

β1





• We want the second particle to perform the same oscillation

• Modify unperturbed oscillation frequency of second particle

x2 = x0 cos





s

β2





• Leads to

x′′
2 +

1

β2
2

x2 = x0
Ne2W⊥

PLc
cos





s

β1



 = x1
Ne2W⊥

PLc

• Assuming

1

β2
2

=
1

β2
1

+
Ne2W⊥

PLc

• Yields simple solution

x2 = x0 cos





s

β1



 = x1

⇒ No more wakefield effect
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Introduction of Energy Spread

• For BNS damping we want to achieve

1

β2
2

=
1

β2
1

+
Ne2W⊥

PLc

this can be achieved by reducing the energy of the second particle

• We express β2 as a function of β1 and the relative energy difference δ

1

β2
1(1 − δ)

=
1

β2
1

+
Ne2W⊥

PLc

this yields

δ ≈ β2
1

Ne2W⊥
PLc

⇒ Want to keep β small

⇒ If we scale β = β0

√

E/E0 we find

δ ≈ β2
0

Ne2W⊥
E0

= const
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BNS Damping for a Bunch

• If each particle of the
bunch should be damped
we must require that the
transverse sum-wake is
matched by the energy
spread
∫ z

−∞ W⊥(z − z′)Nρ(z′)dz′

• Some examples assuming
a rigid bunch
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Energy Spread in the Linac

• In CLIC one uses one RF
phase from the beginning
of the linac

• At the end one runs at
30◦ to reduce the energy
spread

- yields an average
phase of 12◦
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Beam Energy Spread and Wakefield

• We have to work with the
energy spread in the beam

• The shape of the energy
spread and the integrated
wake are different

⇒ can only obtain some
correction

⇒ need to resort to simu-
lations -0.005
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Final Bunch

• To illustrate the final bunch
in CLIC with an initial off-
set of 1σy
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Energy Spread and Beam Stability

• Trade-off in fixed lattice

- large energy spread is
more stable

- small energy spread is
better for alignment

⇒ Beam with N = 3.7 × 109

can be stable

structure quad

⇒ Tolerances are not a
unique number
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Lattice Strength

• We try different lattices

- all scale f = f0

√

E/E0

and L = L0

√

E/E0 with
L0 = 1.15f0

⇒ We need f0 ≤ 2 m

• But would like to have
some reserve
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Magnet Considerations

• The maximum strength of a focusing magnet is limited

- for a normal conducting design rule of thumb is 1 T at the pole-tip

⇒ Required integrated magnet strength is

T
m

E

0.3 GeV

m

f

• For CLIC poletip radius is given by practical considerations of magnet design a ≈
5 mm yielding a gradient of 200 T/m

• We chose about 10% of the machine to be quadrupoles

⇒ fill factor is ≈ 80%

- 10% are lost for flanges (mainly on structures)

• Use L0 = 1.5 m and f0 = 1.3 m yields

ηq =
E0

0.3 GeV

T/m

200 T/m2

m

f0

1

L0

⇒ ηq ≈ 7.7%

• We use discrete lengths hence we loose a bit more
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Sectors in CLIC

• For practical reasons we do not change the lattice continuously but in steps

• To go from the periodic lattice of one sector to the periodic lattice of the next we
need to perform matching

- we change the strength of seven magnets to achieve a transfer matrix M with




















βx,2 −αx,2 0 0

−αx,2 γx,2 0 0

0 0 βy,2 −αy,2

0 0 −αy,2 γy,2





















= M





















βx,1 −αx,1 0 0

−αx,1 γx,1 0 0

0 0 βy,1 −αy,1

0 0 −αy,1 γy,1





















MT

here γ = (1 + α2)/β is the third Twiss parameter is used, in spite of my promise

we require that a similar equation holds true for off-energy particles
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Warning

• We found that the jittering beam should be most stable for smallest beta-functions

• But we still have to make sure that the imperfections will not make this solution
impossible

⇒ have to come back to this topic
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Imperfections
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Introduction

• We also have to be able to express imperfections in the matrix model

• Assume that the transfer-matrix for a beam line is

M = M2M1

the perturbation at the location between M2 and M1 can be written as

~xf = M2M1~x0 → ~xf = M2(M1~x0 + ~δ)

hence we can write for many imperfections

~xf = M~x0 +
∑

i
Mi→f

~δi

with the transfer matrices Mi→f from imperfection i to the end
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Kick of a Misplaced Element

• Assume that element i with transfer matrix Mi is offset by ~yi

~δi = Mi(M0→i~x0 − ~y) + ~y

we transform the beam into the system of the element track through the element
and transform back

• Note: in some cases one needs to transfer into the element system by also multi-
plying with a matrix (e.g. rotate elements)

• At the end of the beam line we find

~xf = Mi→f {[Mi(M0→i~x0 − ~yi) + ~yi]}

⇒ ~xf = Mi→f {MiM0→i~x0 − Mi~yi + ~yi}

⇒ ~xf = M0→f~x0 − Mi→f(Mi~yi − ~yi)

⇒ ~∆i = −Mi→f(Mi − 1)~yi
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Examples

~∆i = −Mi→f(Mi − 1)~yi
~δi = −(Mi − 1)~yi

• Thin quadrupole

~δi = −












1 0
1
f 1





−






1 0

0 1











 ~yi

~δi = −






0 0
1
f

0





 ~yi

hence
~δi =







0

− y
f







• Thin dipole

~δi =







0

a






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Simple Example

• Particle is kicked with angle δ at s1

• Go into normalised phase space












1√
β(s1)

0

α(s1)√
β(s1)

√

β(s1)



















0

δ





 =







0

δ
√

β(s1)







⇒ a kick is more important at a position with large β

• Phase advance is given by S = sin(φ(s2) − φ(s1)), C = cos(φ(s2) − φ(s1))






C S

−S C













0

δ
√

β(s1)





 =







S

C





 δ
√

β(s1)

• Amplitude at s2 is










√

β(s2) 0

− α(s2)√
β(s2)

1√
β(s2)

















S

C





 δ
√

β(s1)

=











√

β(s1)β(s2)S

α(s2)
√

β(s1)
β(s2)

S + C
√

β(s1)
β(s2)











δ
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Imperfections in Normalised Coordinates

• The linac is not the final system

⇒ we are not interested in the final position in real coordinates but in normalised
coordinates

- can be easily translated into a beam further downstream

• We saw that imperfections mainly can be understood as applying a kick to the
beam, the trajectory does not jump

• Example for a thin quadrupole with offset

~δN,i =
√

γ













1√
β(s1)

0

α(s1)√
β(s1)

√

β(s1)

























1 0

− 1
f

1





− m41001





 ~yi

~δN,i =







0 0

−√
βγ 1

f 0





 ~yi

⇒ sensitivity depends on the local beta-function
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Impact on the Emittance

• We consider multi-pulse emittance

• Assume a quadrupole is jittering with RMS value σq

• The increase in normalised angle can be calculated as

σNx′ =

√

√

√

√

√

√ǫ + βγ





σq

f





2

⇒ for small perturbations

σNx′ ≈ ǫ





1 +
βγ

2ǫ





σq

f





2






⇒ the emittance growth is

∆ǫ ≈ βγ

2





σq

f





2

⇒ the emittance growth depends on the square of the perturbation

⇒ the emittance growth depends on the beta-function

D. Schulte, 6th Linear Collider School 2011, Main Linac A1 69



Coupling of the Planes

• A rotated quadrupole couples the two planes

• Example of thin quadrupole

Mc =





















cos φ 0 − sinφ 0

0 cos φ 0 − sinφ

sin φ 0 cos φ 0

0 sinφ 0 cos φ









































1 0 0 0

1/f 1 0 0

0 0 1 0

0 0 −1/f 1









































cos φ 0 sin φ 0

0 cos φ 0 sin φ

− sinφ 0 cos φ 0

0 − sinφ 0 cos φ





















Mc =





















1 0 0 0

(cos2 φ − sin2 φ)/f 1 2 sinφ cos φ/f 0

0 0 1 0

2 sin φ cos φ/f 0 −(cos2 φ − sin2 φ)/f 1





















• Coupling is important since the horizontal emittance is much larger than the verti-
cal
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Simulations
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Simulation Procedure and Benchmarking

• All simulation studies are
performed with different
codes

- based on 100 different
machines

• Benchmarking of tracking
codes is essential

• Comparisons performed in
ILC framework

- tracking with errors

- alignment methods
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Integrated Simulations

• Integration of different systems is necessary

- include correlations in the beam

- feedback in different areas need to work together

- tuning and alignment applied in one system are affected by noise generated in
another

- we sometimes need one system to tune and align the other

e.g. main linac dispersion correction with bumps in bunch compressor and
BDS

luminosity tuning

• Integration of different time-scales is necessary

- have intra-pulse and pulse-to-pulse feedback

- tuning takes time and can interfere with feedback

- alignment can be be sensitive to dynamic effects

- dynamic effects can be sensitive to tuning and alignment

• Different codes are being developed and are quite mature

BMAD/ILCv, CHEF, MATLIAR, LUCRETIA, MERLIN, PLACET, SLEPT. . .
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The Banana Effect

At large disruption, corre-
lated offsets in the beam
can lead to instability

The emittance growth in
the beam leads to correla-
tion of the mean y position
to z

a) shows development of
beam in the main linac

b) simplified beam-beam
calculation using projected
emittances

c) beam-beam calculation
with full correlation

⇒ Luminosity loss increased

⇒ Cure exists

a)

b)

c)

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

20 22 24 26 28 30

L 
[1

034
cm

-2
s-1

]

εy [nm]

L1
Loff

Lang
approx.
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Computing Time Needed

• Beam-beam requires O(105) particles

• Typical full simulation of one bunch takes
≈ 2 × 5 minutes

⇒ tracking one train of 2820 bunches
takes 20 days

⇒ to track 1000 pulses one would need
more than fifty years

• CPUs seem not to become that much
faster any more

• But they contain more than one core

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

1000 10000 100000 1e+06

L 
[1

034
cm

-2
s-1

]

Nm

Nz=15
Nz=25
Nz=35
Nz=50
Nz=75

Nz=100

TESLA example

⇒ take short cuts, e.g single bunch simulations

⇒ would likely profit from parallel codes in the long term (but normally will run 100
seeds)

- some care needs to be taken for wakefields and the beam-beam interaction

- wakefields need to be calculated at least in each cavity, i.e. ≈ 8000 times
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Main Linac Simulations

• Can track many point-like macro-particles

• Or used particles with sizes

- the main linac dynamics is largely linear

- can use ellipses to describe the beam

• Cut the beam into slices

- remember particles stay in their slice

- RF curvature and wakefields

• Each slice is represented by a few ellipses

- incoherent energy spread in the beam

• Need to track the centre and the shape of the ellipses

D. Schulte, 6th Linear Collider School 2011, Main Linac A1 76



Curved Main Linac
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Introduction

Two main reasons why one might want to have a tunnel that follows the earth cur-
vature

- one can stay close to the surface everywhere (but site dependent)

- in ILC, the helium level will follow the equipotential of the gravity

But there are some problems for the beam dynamics

- one needs to guide the beam on a curved orbit this requires introduction of disper-
sion

- the dispersion makes the machine operation more difficult

In ILC the arguments for the cryogenics where considered important, so a curved
tunnel is chosen
In CLIC there was no benefit to go to a curved tunnel, so the laser-straight option is
preferred.
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Dispersion

• We deflect a particle of energy E1 with a dipole corrector (offsetting a quadrupole
has exactly the same effect)
the resulting deflection angle is

δ′1 ≈ 0.3 GeV
Tm2

BL

E1

If we have a second particle at a different energy E2 it is deflected differently

δ′2 ≈ 0.3 GeV
Tm2

BL

E2

so the two particles will take different trajectories
The different is described by the dispersion Dx,y with

Dx =
∂x

∂δ
Dy =

∂y

∂δ

In a transport line with acceleration there is no clearly defined dispersion Have spuri-
ous dispersion from imperfections
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Dispersion in ILC

• Find a periodic solution for
the dispersion

⇒ Projected emittance is
varying but final value is
good

- good example of pro-
jected emittance

• Particles with constant 1%
energy difference shown

• Dispersion is 100 times
larger
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Initial Energy vs. Gradient

• The incoming beam has
an energy spread

• Different longitudinal
slices of the beam are
accelerated with different
gradients

⇒ These path difference
need not be the same
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Some Comments
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Generalised Transfer Matrices

• Mainly to introduce some concepts

• The beam transfer through one element can be described with a simple transfer
matrix R

~x = R~x0

• A number of independent particles (also at different energies) can be tracked by a
new matrix R





















~xf,1

~xf,2

. . .

~xf,3





















=





















R1 0 . . . 0

0 R2 . . . 0

. . . . . . . . . . . .

0 0 . . . Rn









































~xi,1

~xi,2

. . .

~xi,n





















• A wakefield kick from one particle to the next can be included




















~xf,1

~xf,2

. . .

~xf,3





















=





















R1 0 . . . 0

R1,2 R2 . . . 0

. . . . . . . . . . . .

R1,n R2,n . . . Rn









































~xi,1

~xi,2

. . .

~xi,n




















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Example

• In the centre of an accelerating structure, the wakefield kick can be calculated as





















~xf,1

~xf,2

. . .

~xf,3





















=

















































1 0

0 1





 0 . . . 0






0 0

a1 0













1 0

0 1





 . . . 0

. . . . . . . . . . . .






0 0

an−1 0













0 0

an−2 0





 . . .







1 0

0 1





































































~xi,1

~xi,2

. . .

~xi,n





















• This works for long- and short-range wakefields

• In simulation codes this is evaluated efficiently using the fact that the matrix is
sparse
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Some Helpful Model

• The final beam can be described as a vector of slice positions and angles

~bf = (x0, . . . xn−1, x
′
0, . . . x

′
n−1)

this is exactly what we found for a single particle

• The impact of each elements with an offset or angle can be described by a similar
vector

~b =
n
∑

i=1

~bi∆yi

or

~b = B~δ
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Summary

• You should now have an idea of how to design a lattice that can transport the beam

• To this end we discussed

- the matrix formalism for beam transport

- Twiss parameters and normalised phase space

- wakefield

• We also mentioned imperfections

- more to come later
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