
Lecture 1: 
Introduction to Damping Rings 

Yunhai Cai  
FEL & Beam Physics Department  

SLAC National Accelerator Laboratory 
 
 
 

November 6-17, 2011 
 

6th International Accelerator School for Linear 
Collider, Pacific Grove, California, USA 

 
  

 



Third-Generation Light Sources 
APS                                                                     ALS 

  SSRF                                                                       ESRF               



The electron beam emittance that defines the source size and divergence 
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SLC Damping Rings (SLAC) 
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C. Simopoulos and R.L. Holtzaple (1996) 

Radiation Damping FODO Lattice (1985) 
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ATF Damping Ring (KEK) 
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ILC Damping Ring 
S. Guiducci and M.E. Biagini (2010) 
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Phase space plots 



Physical Constants and CGS units 
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Dynamics of Relativistic Particles 
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in Uniform Magnetic Field 
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Assuming no velocity component in direction of B,  

,B
e

pc

evB/c
ρ

v
mγvmγ

2



where  is the radius of the circular motion of the charged particle.  
This is the zeroth-order equation of circular accelerators. B  is called  
the magnetic rigidity.  

1. Energy E=pc, so the higher energy the larger the ring. 
2. Conversion: 1 GeV => 10/2.998 T-m. 
 
      1.0 GeV => =6.67 m and 42 m circumference, if B=0.5 T (e) 
      7 TeV => =2.6 km and 16.3 km circumference, if B=9 T (p) 
 
 

Equation of motion 
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Radiation Damping 
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which is at order of the damping increments. Therefore the damping time 
~T0E/U0 (10 ms) The damping of the emittance is  
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(1.33x10-5 for our 1 GeV ring) 



Hamiltonian of a Charged Particle in 
Electromagnetic field 
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The Hamiltonian is given by 

where p is the canonical momentum, 
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The equation of motion is given by the Hamiltonian equation, 

Here we have (q1, q2,q3) = (x,y,s) and (p1,p2,p3) = (px,py,ps). They are a 
set of the first ordinary differential equations.  

the one in the equation 
of motion 



Hamiltonian Equation 
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Scaled with Design Momentum  

11/16/2011 Yunhai Cai, SLAC 14 

.
)/(

,
)/(

,
/

,
/

,
/

,
/

t

/p

dt

pHd

pH

/p

ds

dt

y

/p

ds

pdp

pp

/p

ds

dy

x

/p

ds

pdp

pp

/p

ds

dx

00

0

0

00y

0y

0

00x

0x

0

HH

HH

HH

with new scaled Hamiltonian 

0yxs pHtpypxp /),,,,,(H

The form of the Hamiltonian equation is preserved. 



Hamiltonian Using the Path Length s as 
Independent Variable  
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The scaled Hamiltonian is suitable of quadrupole, sextupole, octopole, 
and skew quadrupole magnets is given by 
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where =(p-p0)/p0 and p0 is the reference momentum and As the component 
of the vector potential along the direction of propagation. For a storage 
ring, we choose cp0=eB  as shown previously. Under the paraxial  
approximation, namely px<<1 and py << 1, the Hamiltonian can be simplified to 
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For quadrupole magnets, the dependence of  leads to chromaticity. That 
is the reason to introduce the sextupole magnets into the storage rings. 



Paraxial Approximation 
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paraxial approximation 

drop out if we only need the relative (ct) 



Hamiltonian and Transfer Map for a Drift 
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Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 
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Solving the Hamiltonian equation, we obtain the transfer map of 
the drift: 

where s is the length of the draft, subscript “i„” for the initial canonical 
coordinates and “f” for the final ones. One can show that it is indeed a  
symplectic map. 
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Third Pair: Canonical Coordinate 
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After scaling by p0, Ruth‟s choice of the third pair of canonical  
coordinate is given by 

The third pair of canonical coordinate can be derived  
from Ruth‟s 
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where =ct and d=(p-p0)/p0. Obviously, we have used the ultra-relativistic 
approximation. For most electron rings, it is very good approximation. 
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Importance of Symplecticity 

artificial   damping                 or                      growth 



Vector Potential of Magnets 
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Ax=Ay=0 and the component of vector potential along the propagating axis a 

bn and an for normal and skew components respectively. For a quadrupole 
magnet, we have 
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K1, K2 are the standard strengths for quadrupole and sextupole used in  
the program MAD. 



Magnets for NSLS-II (BNL) 
courtesy of Weiming Guo  

Dipole magnet Quadrupole and Sextupole 

11/16/2011 Yunhai Cai, SLAC 21 



Hamiltonian and Transfer Map for  
a Focusing Quadrupole Magnet 

).y(x
2

K
)p(p

δ)2(1

1
H 2212

y

2

xQ

Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 
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Solving the Hamiltonian equation, we obtain the transfer map of a 
focusing quadrupole: 

where s is the length of the quadrupole, , the function Q in  
the path length can be found in ref. Nucl. Inst. Meth. A645:168-174, 2011.  
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Hill‟s Equation and its Solution 
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Hamiltonian for an one-dimensional quadrupole is given by  
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Its Hamiltonian equation leads to the Hill‟s equation 

where K(s+L)=K(s) and L is the periodicity of lattice. Its solution 
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where (s), (s)=- ‟(s)/2, (s)=(1+ (s)2)/ (s), are called the Courant-Snyder  
parameters. Its invariant is given by 
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Transporting Matrices 
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This formula can be derived from the explicit form of the solution in the 
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Normalized Coordinates 
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One-turn matrix:                                      Rotation matrix: 

where A-1 is a transformations from the physical to the normalized 
coordinates: 

We have: 
1ARAM

All these matrices are symplectic. However, the transformation matrix A  
is  not quite unique because of the commuting property of the rotational  
matrices. 
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Propagating Optical Functions 
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Hamiltonian of Sector Bending Magnet 
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Here we have assumed that the magnetic field B matches with the  
bending radius , namely cp0=eB . The first term generates the dispersion  
and the second gives little focusing in the horizontal plane.  
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Similarly, the scaled Hamiltonian of a sector bending magnet can be  
derived using a curved coordinate system. Under the paraxial  
approximation, it is given by 

y 

x 
s Sign convention: 

 
s is the parrticle moving direction.  
For a positive charge e, By is also positive.   



Hamiltonian and Transfer Map for  
a Sector Bending Magnet 

Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 
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Solving the Hamiltonian equation, we obtain the transfer map of a 
sector bend: 

where s is the length of the quadrupole, ,   the function D in  
the path length can be found ref. Nucl. Inst. Meth. A645:168-174, 2011.  
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Transporting Matrices 
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Simplest Periodic Cell: FODO 
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How to compute the Courant-Synder parameters and dispersions? 
For simplicity, we can use thin lens approximation for quadrupoles, 
and short length approximation for dipoles, and no gaps between 
any magnets. 
 
What‟s the problem if we use these FODO cells to build entire ring? 
Why do we need to introduce sextupole magnets? How they work? 
Any unintended consequences of sextupoles? 
 
What determines the beam sizes or beam distribution?  



Chromaticity and its Correction 
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Transporting matrix for a quadupole magnet is given by 

Actually, K1->K1/(1+ ) in the exact solution. Or equivalently, we can make 
the potential of quadupole:   
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On the other hand, the sextupole potential relative to a dispersive orbit 
is given by 

To make a local compensation of  term, we set K2=K1/ x. 



Energy Gain in RF Cavity 
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RF Cavity and Synchrotron 
Oscillation 

11/16/2011 Yunhai Cai, SLAC 33 

RF Bucket   

1nn1n

0

0
snRF

0

RF
n1n

Cδzz

E

U
zk

E

eV
δδ )sin(

For a single RF in a ring, every turn  
we have  

 momentum compaction factor.  
Expand small z,  

,cos s

0

RF
s

E

eV

2π

h
ν

Synchrotron tune is given by 

where s= s 0. 

δ
T

C
z

z
ET

keV
δ

0

s

00

RFRF



 cos



Summary 

1. Hamiltonian is fundamental for the 
beam dynamics in storage rings, 
including the linear optics. 

2. To make the particle motion stable, we 
use harmonic oscillators in all three 
dimensions. In the longitudinal plane, 
the RF bucket makes its stability 
extremely robust. That why we can 
focus on the transverse dynamics. 
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