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Third-Generation Light Sources




Worldwide Electron Storage Rings

The electron beam emittance that defines the source size and divergence
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Worldwide Electron Storage Rings

The electron beam emittance that defines the source size and divergence
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SLC Damping Rings (SLAC)

FODO LGTTICZ (1985)

Radiation Damping
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Figure 2. Sample of data for the positron damping ring. The
vertical scale represents the real size of the bunch.
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Figure 3. Longitudinal damping time data. The origin of the
horizontal axis represents injection time.

C. Simopoulos and R.L. Holtzaple (1996)
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ATF Damping Ring (KEK)
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Table 1: Parameter list for the TILCO8 version compared

ILC Damping Ring
S. Guiducci and M.E. Biagini (2010)

Phase space plots

to the SB2009.

TILCOS SB2009
Energy (GeV) 5 3
Circumference (m) 6476 3238
Number of bunches 2610 1305
N particles/bunch 2x10" 2x10"
Damping time T, (ms) 21 24
Emittance g_ (nm) 0.48 0.66
Emittance ¢, (pm) 2 2
Momentum compaction | 1.7x10* 1.5x10*
Energy loss/turn (MeV) 103 4.5
Energy spread 1.3x10° 1.2x10°
Bunch length (mm) 6 6
RF voltage (MV) 21 7.5
RF frequency (MHz) 650 650
B wiggler (T) 1.6 1.6
Total wiggler length (m) 216 78
Number of wigglers 88 32
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Figure 7: Phase space plots: x (top) and y (bottom) for
Ap/p=0 (centre), 1% (left), -1%o (right)
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Figure 1: Layout of the 3.2km damping rings.



Physical Constants and CGS units

For electron:
Rest energy mc’ =051 MeV

eZ

Classicradius I, = o7 T 2.82x10™ meter

h _
Comptonwavelength/2; A,=—=r/a=3.86x10"" meter

mc
Impedance of free space Z, = an —120r O
C
ec
Alfrencurrent la=—=17045 A

e

For 1 GeV electron: )10
.57

f 7
= /—y—Z =0.999999669
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Dynamics of Relativistic Particles

Relative velocity 8 =VIC, E- vy _Z@_A
1 c ot
Lorentz factor 7 W , B—vxA
Momentum p=ymvV,
Energy E =ymc® = \/02 p° +m°c* =cp/p.
s - v =
Equaﬁon of motion —— . = e(E + — X B), Lorentz for'CZ
dt C
dE =
Energy gain =eVv - E.

dt
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in Uniform Magnetic Field

Equation of motion

d (ymv dv V =
Gmv) =mMy—=e—xB,
dt dt C
Assuming no velocity component in direction of B,
v? F !
myv = my— = evB/c
Yo,
B:x X x x

where ( is the radius of the circular motion of the charged particle.
This is the zeroth-order equation of circular accelerators. B is called
the magnetic rigidity.

1. Energy E=pc, so the higher energy the larger the ring.
2. Conversion: 1 GeV =>10/2.998 T-m.

10 GeV =>p=6.67 m and 42 m circumference, if B=05 T (e)
7 TeV =>p=2.6 km and 16.3 km circumference, if B=9 T (p)
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Radiation Damping

Instantaneous synchrotron radia‘red power is given by (Lienard 1898)

. By
p°

P _—rmc
3°

Energy loss per turn is

2rp . 4mrmc’
UOZ—Py: 3 5 Igsy4'

or U, 4rr,
EO =— =< (py)°. (1.33x10-5for our 1 GeV ring)

which is at order of the damping increments. Therefore the damping time
~ToE/Ug (10 ms) The damping of the emittance is

o = 8 e—2t/t (1 e—Zt/r)

ext equ
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Hamiltonian of a Charged Particle in
Electromagnetic field

The Hamiltonian is given by
H =eg+[m?c* +c?(p—eA/c)*]*,

where p is the canonical momentum, the one in the equation
~«e~/ of motion
p=P+-A
C
The equation of motion is given by the Hamiltonian equation,

dg oH dp, oH

dt op. dt  og,

Here we have (g1, 92,935) = (X.y.,s) and (p1,p2.p3) = (Px.py.ps). They are a
set of the first ordinary differential equations.
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Hamiltonian Equation

Time t is the independent variable: Path length s is the independent variable:
dx oH dp,  JoH dx Odf dp,  Odt
dt op, dt X ds Jp, ds X
dy _oH dp, __oH dy _oc#¢ dp, _ ot
dt op, dt oy ds op, ds oy
ds _oH dp, _ JH dt = og¢ d(—H) _ odt
dt op, dt os ds o(—H)' dt ot
with

dlz_ps(xi Py Y, py1t1_H)

Derivation: dx _dxdt_ oH /6H __0ps _ Odft
ds dtds oJp, Ip, op.,  p

X X

11/16/2011 Yunhai Cai, SLAC 13



Scaled with Design Momentum

dx  Odftlp, dp./ Py _  Odftlp,

ds op,/p, ds OX

dy _ Otlp, 9P,/ Po Ot

ds op,/p, ds oy

dt _~ odlp, d(=H/py) _ Odtp,
ds o(-H/p,)’ dt ot

with new scaled Hamiltonian
dt=—p;(X, p,, ¥, Py, t,—H)/ p,

The form of the Hamiltonian equation is preserved.
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Hamiltonian Using the Path Length sas
Independent Variable

The scaled Hamiltonian is suitable of quadrupole, sextupole, octopole,
and skew quadrupole magnets is given by

H=—A_ fa+of—pi—p2.
CPo
where §=(p-po)/po and pg is the reference momentum and A the component
of the vector potential along the direction of propagation. For a storage
ring, we choose cpp=eBp as shown previously. Under the paraxial
approximation, namely p,«<1 and p, << 1, the Hamiltonian can be simplified to

A px+py
Bp 2(1+06)

For quadrupole magnets, the dependence of § leads to chromaticity. That
is the reason to introduce the sextupole magnets into the storage rings.

11/16/2011 Yunhai Cai, SLAC 15



Paraxial ApproximaTion

H= ———\/(1+(5)

_E_J(“é) —p2-p

iﬁj ~(rolis (/E;)Z_(/EZ)Z]M

i:i ~(Lroll- (/E;)Z_(/Eis)z]m
paraxial approximation z%—(1+5)[1—2(/pj;)2—2(/|OE§)2]

_eA ~(1+0)+ P, + Py
Ccp, T 2(7+0) 2(7+9)

drop out if we only need the relative (ct)

11/16/2011 o 16
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Hamiltonian and Transfer Map for a Drift

Use s as the independent variable, Hamiltonian in the paraxial
approximation is given by

Hp = 21+ 5)(|Ox py ).

Solving the Hamiltonian equation, we obtain the transfer map of
the drift:

X, =X T
1+0

pr - pXI

Pyi
=V. A
Yo =% 1+6 >

pyf = pyi,
S =9,
As

(f :gi 2(1 5) (pXI pyi)!

where As is the length of the draft, subscript "i" for the initial canonical
coordinates and “f" for the final ones. One can show that it is indeed a

symplectic map.
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Third Pair: Canonical Coordinate

After scaling by pg, Ruth's choice of the third pair of canonical
coordinate is given by

dt  oH d(ct)  oH
ds &(-E/p,)’ —> ds  o(-p/p,)’
d(—-E/p,) oH E=CP d(-p/p,)  oH
ds ot ds o)’
The third pair of canonical coordinate can be derived
from Ruth's
ds oH dz oH

ds o¢' —'s ds o5
d_ oH  zze  do_ oH
ds o8 ds oz

where ¢=ct and 6=(p-po)/po. Obviously, we have used the ultra-relativistic
approximation. For most electron rings, it is very good approximation.

18
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p,(mrad)

Importance of Symplecticity

artificial damping or growth
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Vector Potential of Magnets

A,=A,=0 and the component of vector potential along the propagating axis a

A = —Re[z_:%(bn +ia )X +iy)"].

b, and a, for normal and skew components respectively. For a quadrupole
magnet, we have

Yy b2 2 2 Kl 2 2
V X, = — = X — = = X — .

K;>0, it focuses in x and defocuses iny. For a sextupole magnet, we have

As b3 3 2 Kz 3 2
V.(X,y)=— = X° —3Xy )= —=(x°—3xy°).
s(X.y) B 3Bp( y°) g ( y°)

Ki, Kz are the standard strengths for quadrupole and sextupole used in
the program MAD.

11/16/2011 Yunhai Cai, SLAC 20



Magnets for NSLS-IT (BNL)

courtesy of Weiming Guo

Dipole magnet
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Hamiltonian and Transfer Map for
a Focusing Quadrupole Magnet

Use s as the independent variable, Hamiltonian in the paraxial
approximation is given by

K
H — 2 2 1 X2_ 2 .

Solving the Hamiltonian equation, we obtain the transfer map of a

focusing quadrupole: X, = X, COS(kAS) + —4_sin(xAs),
k(1 +0)

P, =—K(1+9J)x; SIN(kAS) + p,; COS(KAS),

Y; =Y, cosh(xAs) + Dy sinh(xAs),
k(1 +
Py = x(1+ )y, sinh(xAs) + p; cosh(xAs),

0; =0;
Uy =45+ 4y(X;.Py.Yi:Pyi,0,,A8),

where As is the length of the quadrupole, ¥ ={Ki/(1+9), the function Aq in
the path length can be found in ref. Nucl. Inst. Meth. A645:168-174, 2011,

11/16/2011 Yunhai Cai, SLAC 22



Hill's Equation and its Solution

Hamiltonian for an one-dimensional quadrupole is given by
1 1
H=>p2+>K(s)X?,
2 2
Its Hamiltonian equation leads to the Hill's equation
d’x

E + K(S)X — O,

where K(s+L)=K(s) and L is the periodicity of lattice. Its solution
X(8) = ~/23,/(5) cos [y (s) +4],

where (s), a(s)=-p'(s)/2, y(s)=(1+u(s)?)/p(s), are called the Courant-Snyder
parameters. Its invariant is given by

P(s)x° + 20(S)XX" + B(s)x"? = 2],

11/16/2011 Yunhai Cai, SLAC 23




Transporting Matrices

Given x, X' at positions;, the value of x, x' at position s, can be written as

B . .
(X] ( ﬂ_z )1/2( COSy, +a, SIN le) (:b)lﬁz )1/2 SNy, X
— 1
) | l+oa, . p i (X']
s, | — G 1)1,22 siny,, + (ﬂ ﬂ )1,2 cosy,, (L)Y cosy, —a,siny,,) s,
1P 102 2

This formula can be derived from the explicit form of the solutionin the
previous slide. If there is a periodicity from s; to s,, it reduces to

(xj (cos;wasiny Bsin u J(xj
X') .o —ysinu cosu—asinu )\ X' ).

where |, = ¥1,. This is the Courant-Snyder parameterization of the one-turn
matrix. The betatron tune is defined by y=,/2x. All these matrices are
symplectic, M\JMT = J, and ( 0 1)

=1 0/

11/16/2011 Yunhai Cai, SLAC 24



Normalized Coordinates

One-turn matrix: Rotation matrix:

M COSu+aSin i Ssin u o cosu Sinu
—ysing COSu—asinu |\ =sing cosu
We have: .
M = ARA”

where A-lis a transformations from the physical o the normalized
coordinates:

1
A1=‘/f O,A=\—/§ (1)
ﬁ\/ﬁ JB B

All these matrices are symplectic. However, the transformation matrix A

is not quite unique because of the commuting property of the rotational
matrices.

11/16/2011 Yunhai Cai, SLAC 25



Propagating Optical Functions

Using the transformation matrix A and A-l, the transporting matrix M, can

be rewritten as
. -1
M 12 — A2 RlZAl )
This leads to

Z‘z = AR, =M, A

Since M;;, is determined by the components in beamline, we can use this
formulato compute the optical function at positions, if their initial values

at s; is known. For the positions,, it is easy to show that
2 2 2 2

L= A11+ Alz oo = —( All ;A\21—I— AlZ Azz ),y = AZl—l— Azz :

The phase advance is S ~
w, =tan™ (A, / Au)

11/16/2011 Yunhai Cai, SLAC 26



Hamiltonian of Sector Bending Magnet

Similarly, the scaled Hamiltonian of a sector bending magnet can be
derived using a curved coordinate system. Under the paraxial
approximation, it is given by , , ,
X X“  PytP
Hp=—=0+—+—=.
p 207 2(1+9)

Here we have assumed that the magnetic field B matches with the
bending radius p, namely cpo=eBp. The first term generates the dispersion
and the second gives little focusing in the horizontal plane.

Y
= Sign convention:

s is the parrticle moving direction.
For a positive charge e, B, is also positive.
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Hamiltonian and Transfer Map for
a Sector Bending Magnet

Use s as the independent variable, Hamiltonian in the paraxial

approximation is given by « 2 p24p?
Hp=——0+—+—=.
p 207 2(1+9)

Solving the Hamiltonian equation, we obtain the transfer map of a
sector bend: X, = X; COS(KAS) + K(Ipi 5)sin(z<As)+p§i(1—cos(ms)),idispepsion

P =—K(1+J)x; SIN(KAS) + p,; COS(KAS) + k(1 + I, )p S, SIN(KAS),

ASpyi
Yi =Y (1+0)
pyf - pyl
5, =0

Uy =13+ A(X.P iy 05,0, AS),

where As is the length of the quadrupole, x=1/(py(1+3)) the function Ap in
the path length can be found ref. Nucl. Inst. Meth. A645:168-174, 2011,
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Transporting Matrices

1. Drift with length L:

2. Focusing quadrupole with length L and strength K

1L 00O0 0 cos(LVK) %sin(L\/ﬁ) 00
010000 _JKsinLVK)  cos(LVK) 0
00 1LOO 00 cosh(LVK)  ——sinh(LVK) 0 0
00 K 00
000100 JKsinh(LVK)  cosh(LVK)
0O 0 00 10 00 00 10
00 00 0 1 00 00 0 1
3. Sector bend with radius p and length L
L L L Canonical coordinates used:
cos—  psin— o o p(7—cos—) 0
P P P
gkl 00t 25(%, P Y. Py 5.0
0 0 1L 0 0 and §=(p-po)/po.
00 01 00
0 0 0o Lo
in— —cos— L—psin= 1
smp o7 cosp) 00 psmp PGTh Ieng'rh
11/16/2011 Yunhai Cai, SLAC 29



Simplest Periodic Cell: FODO

o
o

QQ
D|D

How to compute the Courant-Synder parameters and dispersions?
For simplicity, we can use thin lens approximation for quadrupoles,
and short length approximation for dipoles, and no gaps between
any magnets.

What's the problem if we use these FODO cells to build entire ring?
Why do we need to intfroduce sextupole magnets? How they work?
Any unintended consequences of sextupoles?

What determines the beam sizes or beam distribution?

11/16/2011 Yunhai Cai, SLAC
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Chromaticity and its Correction

Transportingmatrix for a quadupole magnet is given by

cos(L,/K;,) \/%sin(L\/KT) 00 0
1
~JKosinLfK)  cos(LyK,) 00 00
00 cosh(Ly/K, ) JlK—Sinh(L\/KT) 00
1
00 JKsin(LyKy)  coshyk,) O °
00 00 10
00 00 01

Actually, Ki->K;/(1+§) in the exact solution. Or equivalently, we can make
the potential of quadupole:

~ K K K
V= 1 X2_ 2 z_1)(2_ 2__1X2_ 25.
Qz(1+5)( y) 2( y°) 2( y)

On the other hand, the sextupole potential relative to a dispersive orbit
is given by K
VS(X’y) — ?2[()( + nx5)3 o 3(X + 77x5)y2]

To make a local compensation of § ferm, we set K;=K;/n..
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Energy Gain in RF Cavity

From dE -
_:e

V- E,
dt
—> dE = eE,dz,

= AE = [eE,dz'= eV, (2).

With a proper choice of the RF cavity, we obtain

f, =c/C,
fre = hfo,
w = 27f
k=2

C,
zZ=—/,

eV . 27f
Energy gain: & = & + ——sin(——~

0

11/16/2011 Yunhai Cai, SLAC
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RF Cavity and Synchrotron
Oscillation

For a single RF in a ring, every turn RF Bucket
we have
( evRF . UO | - — T
) 0,.,=0, + = SiN(Kge 2, +.) = o
0 0 1 /// / \ \\\
L Lo =L, _aC5n+1 . of lj'/ \/ 4/\i )
001k -\\ \ v//’ //
o, momentum compaction factor. N N~
Expand small z,
(. eVok
0 = —RETRE 005 7
) ToEq Synchrotrontune is given by
z:_£5 b = ha eV coss
s (R
N TO 27[ EO

where ¢ =vawo.
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Summary

1. Hamiltonianis fundamental for the
beam dynamics in storage rings,
including the linear opftics.

2. To make the particle motion stable, we
use harmonic oscillators in all three
dimensions. In the longitudinal plane,
the RF bucket makes its stability
extremely robust. That why we can
focus on the transverse dynamics.
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