IR Engineering Specifications

Toshiaki Tauchi (KEK) LCWS 2011 Granada, Spain 26-30 September 2011

For DBD/TDR : Design Study for the Interaction Region; Push-Pull System for the ILC by the MDI-CTG + A.Seryi (BDS) , July 2010

Tasks (Work Plan)

The following list summarises the major tasks of the working plan.

- 1. Design of the detector motion system; study of its vibration properties in simulation and experiment.
- 2. Design of the IR underground hall for push-pull, including facilities and services for the operation of the detectors, radiation shields, seismic issues, impact of safety rules.
- 3. Optimisation of the detector integration and its impact on assembly procedures, magnetic and radiation shielding, vibration sources.
- 4. Design of detector services supplies for push-pull (data and HV cables, cryogenics).
- 5. Design and prototype of the final doublet quadrupoles and verification of their stability.
- 6. Design of alignment system for the final doublet magnets and the inner detector components, including the design of a laser interferometer system.
- 7. Study on IR vacuum design, including vacuum requirements and design of quick connection valves.
- 8. Study of intra-train feedback systems in a push-pull system.

Work Plan Diagram

Task Name	201	10		2011		2012		2013
	Q	1 Q2	Q3 Q4	Q1 Q	2 Q3 Q	4 Q1 G	2 Q3 Q4	Q1 Q2
Push-Pull Design Study	1	- CO			<u> </u>			•
T0: Finalisation of Work Plan done	1							
Work Plan Evaluation)							
Push-Pull Work Plan			_					
T1: Detector Motion System FNAL							_	
Motion System Studies (incl. Vibrations) CERN	- ARU	IP						
Decision on Motion System (Platform or not) ETH				•				
Detector Motion System Design SLAC								
T2: IR Hall Design DESY	· 3						-	
Civil Facilites and Services KEK -							Þj	
Radiation Shields JINR				:				
Seismic Studies BARC								
Interface to Extraction Beam Lines and Beam Dump				:		:	P	
Impact of Safety Rules				:		:		
T3: Detector Integration and Assembly LAL, LLR	L			+				
Assembly Procedure Study KEK						:		
Detector Integration				:		:	P	
Magnetic and Radiation Shielding				:		:	P	
T4: Detector Services with SiD also CLIC								
Movable Services (Cryo, Cables)								
T5: Final Doublet Design and Prototyping BNL								
Vibrational Stability Studies				:		:		
Magnet Integration Design				:		1	Į_	
T6: Alignment Procedures JAI (MONAIISA) ?								
Alignment System for FD and Inner Detector				:				
Laser Interferometer System				:		1	P	
T7: Vacuum Design LAL								
Vacuum Requirements CI&ASTEC				1	<u></u>			
Connection Valves Design							ŧ	
T8: Feedback System JAI (FONT)								
Design of Feedback System for Push-pull environment								
IR Engineering Specifications Oratt by MDI-CIG			3					
Preparation of TDR/DBD			3				¥-	
TDR/DBD Editing			3					
ILC Milestones								
Technical Design Phase 2								۳j
CERN Workshop			•					
Oregon Workshop				•••				₩
TDR/DBD Publication			3					•

Plenary summery talk on "Planning the Push-Pull" Conclusions by Marco Oriunno at ALCPG11

- Platforms are a technically acceptable solutions for the push pull, which preserves the respective design of the detectors and does not amplify the ground vibrations.
- The platforms must be designed according to a set of Functional Requirements, specifying the static and dynamic performances. These requirements will be defined by the detectors.
- The design and construction of the platforms becomes a task of the CFS group, which will develop the project along the requirements list and together with the detectors.

Trade off study - Conclusion

by Marco Oriunno at ALCPG11

SiD with Platform

ILD with Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	None
Vibrations Amplification	Low	Low

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration Transfer Function from ground : Amplification < 1.5 between 1 and 100 Hz.

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

Impact of beam height reduction on ild yoke design

- view of the ild detector in closed interlocked position in the underground hall with tunnel

13255

250

14800

ild detector weight $\Sigma \sim 14500$ tons

The platform detector unit is a precision part.

It has to be isolated from outer forces.

Subsection with different physical properties are to be avoided

=>

1500

Platform in beam position has to be locked.

Stromhagen, Richard / DESY-Hamburg / ILD Integration Workshop, 19-20 April 2011, LAL - Paris

15740

FIGURE 6.3-4. Design study of the underground experiment hall with ILD (left) and the second detector in push-pull configuration.

CERN Linear Collider Study Task 1 and 2 Technical Basis for Study

to be completed by LCWS2011

Page

REP/Basis/216967/MJS/260511

Rev 1 | June 2011

1	Introd	luction		1
2	Task	1 Work Plan	sponsor :FNAL	2
	2.1	Structural Design H	Basis	2
	2.2	Platform Design D	evelopment	2
	2.3	Transport System		2
	2.4	Geotechnical input		3
	2.5	Scheme Design		4
3	Task 2	2 Work Plan	sponsor :CERN	5
4	Desig	n Basis for Study		6
	4.1	Task 1 – Movemen	nt Platform	1
	4.2	Task 2 – Cavern St	udy	4
	4.1 4.2	Task 1 – Movemen Task 2 – Cavern St	it Platform tudy	1 4

CFS technical workshop was held for 25/26 July in London, to check on the design progress. Participants are J.Osborne, A.Gaddi , M.Gastal , A.Herve (ILD) , V.Kuchler , T.Lackowski, M.Oriunno (SiD), K.Sinram (ILD) ...

Layout 5

#	Requirement	Layout 3	1 Layout	2 Layout	3 Layout	4 Layout 5
1	Surface assembly of Magnet	1	4	3	3	4
2	Underground installation of Tracker, Calorimeters and Forwards	1	4	2	2	4
3	Number and Size of Cranes	3	3	3	2	4
4	Costs: Shafts and Halls size	4	2	2	2	3
5	Infrastructures	NA	NA	NA	NA	NA
6	Easy Maintenance, Smooth Operation	2	4	3	2	4
7	Beam Commissioning	1	1	1	4	4
8	Safety	2	4	2	2	4
	Final Score	14	22	16	17	27

Rating Scale 1÷5 : 1=Low, 5=High

M.Oriunno (SiD),25-26 July, 2011, ARUP meeting

Tom Lackowski (FNAL), MDI-CFS webex meeting

Mountain Site

Hilly Site

Mountain Site

Kitakami

T. Sanuki, ILC Tohoku - Kickoff Meeting, 11-14 September 2011, Tohoku University, Japan

Y. Sugimoto, IWLC10, CERN/CICG, 8 Oct.2010

The CMS plug is good example of a platform

4366-ILD-T-Platform-and-environment.ppt A. Hervé Seoul workshop 17 February 2009

Integrated Displacement σ (r.m.s.)

on the CMS plug

by Marco Oriunno at ALCPG11

<image>

Figure 3. Top view of the pug

The plug with 2500 tons - SX5 – 15/05/2006

4. Survey & Alignment Made by Masuzawa-san@KEKB Revire StaBeam line & floor motion during Belle roll-out analyzed. Beam line floor & Cryostat (retracted) motion BeamLine IPR11 P10 Tunnel Floor JPR14 B4F+4200 B4F+1100 OCS2 Wall B4F+4300 JPR01 JPR QCS1 IPR QCS3 **B4** Floor **P5** P2 P6 P9 P3 **P**8 Pcenter Pi P4 **P**7 JPL QCS3 JPL QCS1 JPL01 JPL QCS2 IPL QCS4 B4F+1500 **Tunnel Floor** P11 JPL14 JPL1 B4F+4200 5m duis

H.Yamaoka, ALCPG11, 19-23 March 2011, Eugene, USA

Response acceleration @platform (Belle detector 1,300t, 90cm/min)

H.Yamaoka, ALCPG11, 19-23 March 2011, Eugene, USA

Compare response acc. to the other moving system

Response acceleration@ND280

Response acceleration → ~0.1G

Seismic criteria for the ND280

- → 0.5G
- \rightarrow 0.1G of Acc is less than the criteria.
- → But 10 time bigger than the Belle moving system.

IP Region Final Doublet

Glen White/ SLAC , ALCPG11

Luminosity Loss vs. QD0 Jitter

- Data shown gives % nominal luminosity for different levels of uncorrelated QD0 jitter.
 - 100 pulses simulated per jitter cases with FFB
 - Mean, 10% & 90% CL
 results shown for each jitter
 point from 100 pulse
 simulations
- Tolerance to keep luminosity loss <1% is <50nm RMS QD0 jitter.

Glen White/ SLAC , ALCPG11

Draft of "engineering specifications", 12 September 2011

Engineering Specifications (1) : Push Pull Issues	unit	value	SiD	ILD
Time for Exchange experiments with rough alignment (mm)	day	1		
Time for Fine alignement, vacuum evacuation	day	1		
Time for Restart the machine and experiment	day	1		
Time for Beam calibration and alignment for the nominal luminosity	day	1		
Number of Pushpull operation	/year	10		10
Number of Pushpull operation for 15 years	times	150	100	150
Detector total weight	tons	15,000	10,000	15,500
Detector beam level	m	9	9	9
Maximum acceleration on the detectors during the movement	G	0.5	0.0001	
Total moving distance from IP to the garage position	m	15		25
Residual magnetic field at IP from detector in the garage	Gauss	50		50
Pulling forces with two lines (multiple anchoring points?)	tons/line	300		
Number of anchoring points		4		
Movement speed	cm/min	10	6 to 30	
Displacement due to the movement : radius	mm	20		
Displacement due to the movement : angle	mrad	2.5		
Adjustment of the movement : x,y	(\pm) mm	1		
Adjustment of the movement : angle	mrad	0.1		
Slow downward movement of the floor within ± 50 m around IP (for several	mm	5		
weeks?) with feedback system		<i>.</i>		
Platform : width	m		20	14
Platform : length	m		20	14.8
Platform : thickness	m			2.2
Platform : wall clearance	mm		10	
Platform : max. vibration transfer function for microseisms	1 <f<100hz< td=""><td></td><td>1.5</td><td></td></f<100hz<>		1.5	
Platform : pulling force in locomotion system with rollers	tons	750	500	750
Platform : pulling force in locomotion system with airpads	tons	300		300
Roller : a roller system must be supplemented by another system that allows a	3-axis movement	nt on IP. A goo	od candidate v	<i>w</i> ould be a
grease-pad system on top of the roller supporting platform.				
Airpad : Standard airpad systems have the disadvantage of requiring a slight life	ft of the load of	around 5 mm	. However as	the landing
is obtained by leaking air through orifices this landing is very smooth as it had	been verified b	y installing ac	celerometers	on CMS
elements.				
hydraulic jacks				

.) A scenario suggested by R.Settles and modified by T.Tauchi, --Notation: BPL=best possible luminosity. --Assumption: two detectors acquire BPL in 1.25x10⁷ sec each year. That is, 0.62×10^7 sec per detector. --Assumption: 1.25×10^7 sec = 145 days = 20 weeks running at BPL. That is, 10 weeks per detector per year. --Assumption: Yearly long shutdown for yearend holidays and machine work/detector work = 12 weeks (week 51 to week 10). --Scenario: -start week 11, det-1 on beam. -det-1 BPL running 2 weeks + 1 week contingency

-push-pull+calib

for machine study and inefficiency 1 week -det-2 BPL running 2 weeks + 1 week contingency for machine study and inefficiency 1 week

-push-pull+calib --Therefore 1 cycle = 8 weeks.

--Need 5 cycles so that each detector gets 10 weeks of BPL running. --Total running time = 40 weeks, meaning from week 11 to week 50.

II.) Evolution of BPL from "Parameters for the Linear Collider", November 2006:

For 1.25 x10⁷ sec of running in a year and $L_{goal}=2x10^{34}$ cm⁻²sec⁻¹, --Yr 0: commissioning of machine and detectors, i.e. no BPL running. --Yr 1: BPL = 10% of $L_{goal} = 25 \text{ fb}^{-1}$: 2.5 fb⁻¹/push-pull --Yr 2: BPL = 30% of $L_{goal} = 75 \text{ fb}^{-1}$: 7.5 fb⁻¹/push-pull --Yr 3: BPL = 60% of $L_{goal} = 150 \text{ fb}^{-1}$: 15 fb⁻¹/push-pull --Yr 4: BPL =100% of $L_{goal} = 250 \text{ fb}^{-1}$: 25 fb⁻¹/push-pull

total = 500 fb⁻¹ (250 fb⁻¹ each for two detectors)
This model involves 10 push-pulls per year while for precision-physics measurements, we may need fewer push-pulls.
Do we need Gentleman's agreement between the two detectors for common publication of experimental results ?
"Discovery papers" with all members of two collaborations plus accelerator physicists as authors

Draft of "engineering specifications", 12 September 2011

Engineering Specifications (2) : Experimetnal Hall	RDR	SiD	ILD	ILD in Mtn. site		
Parameters that define the underground hall volume						
IR Hall Area(m); (W x L)	25x120			25x100		
Beam height above IR hall floor (m)	8.6	9(7.5)	8(9)	9		
IR Hall Crane Maximum Hook Height Needed(m)	20.5	5m above top of detector	20.5	20.5		
Largest Item to Lift in IR Hall (weight and dimensions)	400t	380t(HCAL)	55t, 3x3x1.5m	400t		
IR Hall Crane	400t+2*20t	400t(200tx2)/10t	80t(40tx2)	(200t+20t)x2		
IR Hall Crane Clearance Above Hook to the roof (m)	14.5(includes arch)		6	12.5		
Survice caverns(m); (W x L xH)	none		15x25x11	15x25x11		
Resulted total size of the collider hall (W x L x H)	25x120x39	20.2x90x30	29x100x30	25x100x33		
Area at garage position		19x 55.5	w/ side access tunnel	with side cavern		
Parameters that define dime	ensions of the IR hall	shaft and the shaft cran	ne			
Largest Item; Heaviest item to Lower Through IR Shaft (weight and dimensions)	9x16m, 2000t	2500t	3500t, 15.7x7.81m	-		
IR Shaft Size : diameter(m)	16	18	18	-		
IR shaft fixed surface gantry crane. If rented, duration	1.5 years	1.5 years	1.5 years	-		
Surface hall crane should serve IR shaft	Yes	Yes	Yes	-		
Other shafts near IR hall for access	No	Yes	No	-		
Elevator and stares in collider hall shaft	Yes	?	Yes			
Size of access tunnel at Mtn. site (W x H, m)	-	-	-	11x11, 10.2x8.0		
Parameters that define dimension	lefine dimensions of the surface assembly building and its crane					
Surface Assembly Building Area ((W x L, m)	25 x 100 / detector		30x60	27x100 / detector		
Largest Item to Lift in SurfAsm. Bldg. (weight and dimensions)	400t	380t(HCAL)	180t	400t, 8.6 \$		
Surface Assembly Crane	400t+2*20t	400t(200tx2)/10t	2x80t	(200t+20t)x2		
SurfAsm. Crane Maximum Hook Height Needed(m)	18	20	19	20.5		
SurfAsm. Crane Clearance Above Hook to the roof (m)	7		5m to ceiling	6.5		
Resulted volume of surface assembly building (W x L x H, m)	25 x 100 x 25		30x60x24	27x200x27		
Parameters that define cran	ne access area and cl	learance around detecto	or			
SurfAsm. crane accessible area (needed) / available (W x L, m)	20 x 102		28x56			
IR hall crane accessible area (needed) / available (W x L, m)	22 x 98		28x41	18x98		
Maximum Detector Height(m)		16.15	15.74	15.74		
Detector Width (m)		18.53(14.334)	15.665	15.665		
Minimum Detector Clearance (W x L x H, m)			15.67x13.26x15.74	15.67x13.26x15.74		
FILL IN OTHER IMPORT	ANT PARAMETERS	WHICH ARE MISSING	Ĩ			
Maximum AC power (MW)	-					
Temerature control (°C)	-					
Humidity control (%)	-					
Sump Pump Control System (ground water)	-					
Cryogenics system : 4K He liquefier and large dewar	-	same level as the coil	service cavern	service cavern		
Dump registor	-	on the detector		service cavern		

area is t

Draft of "engineering specifications", 20 May 2011

Engineering Specifications (3) : QD0 Issues	unit	value	
Mover : number of degrees of freedom		5	horizontal x, vertical y, pitch φ , yaw ψ , roll α
Mover : Range per x,y degree of freedom	mm	± 2	
Mover : Range per ϕ , ψ degree of freedom	mrad	± 1	
Mover : Range per α degree of freedom	mrad	± 30	
Mover : Step size per degree of freedom of motion	μm	± 0.05	
Before BBA : Accuracy per x,y degree of freedom	μm	± 50	
Before BBA : Accuracy per φ , ψ degree of freedom	µrad	± 20	
Before BBA : Accuracy per α degree of freedom	mrad	± 20	
BBA : alignment accuracy per x,y	nm	± 200	from a line determined by QF1s for 200ms
BBA : Accuracy per α degree of freedom	μrad	± 0.1	from a line determined by QF1s for 200ms
Vibration stability : $\Delta(QD0(e^+)-QD0(e^-))$	nm	50	within 1ms long bunch train

Engineering Specifications (4) : Radiation shield	unit	value	
Self shielding		must	
Normal operation : anywhere beyond the 15m zone housing the off-beamline detector	μSv/hour	0.5	
Accidental beam loss : dose for occupational workers	mSv/hour	250	The acident is defined as the simultaneous loss of
Accidental beam loss : integrated doze for occupational workers	mSv/accident	1	both e^+ and e^- beams at 250 GeV/beam
Accidental beam loss : beam shut-off time after the accident	beam-train	1	anywhere, at maximum beam power.

Engineering Specifications (5) : Vacuum	unit	value	
in the 200m upstream of the IP	nTorr	1	$=1.3 \times 10^{-7} \text{ Pa}$
in the remainder of the BDS system	nTorr	10	$=1.3 \times 10^{-6} \text{ Pa}$
in the 18m zone of the detector			not specified in the IR document

Conclusions

- Platform system was chosen for the push pull operation at ALCPG11.
- MDI continues to study based on the work plan with milestones for the DBD/TDR and additional resources by the ILCSC.
- Draft of the engineering specifications was made for designs of the push-pull system and experimental hall with collaboration of the CFS group.
- \cdot We will enlarge the synergy with CLIC.