M_h in the MSSM-seesaw with ILC precision

Siannah Peñaranda Rivas

Departament of Theoretical Physics, University of Zaragoza

Sven Heinemeyer

IFCA, CSIC-UC, Santander

based on collaborations with M.J.Herrero and A.M.Rodriguez-Sanchez

S.H., M. J. Herrero, S.P., A.M. Rodriguez-Sanchez, arXiv:1007.5512v2 [hep-ph], JHEP05 (2011) 063

Outline

- Motivations
- MSSM-seesaw framework and Neutrino physics
 - MSSM-Seesaw model
 - Seesaw model for one generation neutrinos/sneutrinos
 - Sneutrino and Higgs boson sectors
 - Renormalization prescription
- 3 One Loop $\nu/\tilde{\nu}$ corrections to m_h : Results
- 4 Conclusions

Motivations: Hunting the Higgs

- The mechanism of EWSB is still unknown
- The Higgs mass will be a precision observable
- Prospects in precision meaurements on the SM-like Higgs boson mass

LHC: $\Delta m_h \approx 0.2$ GeV ILC: $\Delta m_h \approx 0.05$ GeV

- Global fit to all SM data:
 - The combinations from the LEPEWWG are used to perform stringent tests the Standard Model of particle physics by comparing the precise results with theory predictions.
 - The constraint on the mass of the Higgs boson is of particular interest

Motivations: Higgs mass corrections

- SUSY: Contrary to the SM: m_h is not a free parameter
- MSSM tree-level bound:
 m_h < M_Z, excluded by LEP Higgs searches
- Large radiative corrections:
 - ullet Dominant one-loop corrections (Yukawa sector): $\sim G_F m_t^4 {
 m ln} \left(rac{m_{ ilde{t}_1} \, m_{ ilde{t}_2}}{m_t^2}
 ight)$
 - Higgs boson mass have been computed with very good precision at one, two loop level...
 - 2-loop corrections: $m_h < 135 \text{ GeV}$
- Measurement of m_h , Higgs couplings \Rightarrow test of the theory

Present work:

MSSM-seesaw scenario: MSSM + massive right handed neutrinos and their supersymmetric partners

How can the massive neutrinos affect m_h ?

MSSM-Seesaw model

- Neutrino mass and mixing and Neutrino Oscillations requires new physics beyond the standard model
- Seesaw solution: Add right handed neutrinos to SM with Majorana mass
- MSSM-Seesaw model: MSSM + massive right handed neutrinos and their SUSY partners
- A seesaw mechanism of type I is implemented to generate the neutrino masses and mixing angle
- SUSY version of type I seesaw model:
 - Smallness of neutrino masses
 - Stabilizing EW scale without fine-tuning
 - Providing a natural candidate for a dark matter
 - Grand unification of SU(3)xSU(2)xU(1)
- Present work:

For simplicity we restrict to the one generation neutrinos/sneutrinos case (three generations for a future work)

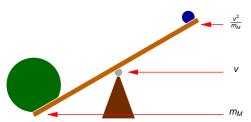
Seesaw model for one generation neutrinos

$$-\mathcal{L}_{\nu} = \frac{1}{2} \left(\begin{array}{cc} \overline{\nu_{L}} & \overline{\nu_{R}^{c}} \end{array} \right) \left(\begin{array}{cc} 0 & m_{D} \\ m_{D} & m_{M} \end{array} \right) \left(\begin{array}{c} \nu_{L}^{c} \\ \nu_{R} \end{array} \right). \qquad m_{D} = Y_{\nu} v_{2}$$

$$\nu = \nu^{c} = \cos \theta (\nu_{L} + (\nu_{L})^{c}) - \sin \theta (\nu_{R} + (\nu_{R})^{c}),$$

$$N = N^{c} = \sin \theta (\nu_{L} + (\nu_{L})^{c}) + \cos \theta (\nu_{R} + (\nu_{R})^{c})$$

$$m_{
u,\,N} = rac{1}{2} \left(m_M \mp \sqrt{m_M^2 + 4 m_D^2}
ight) \; _{\overline{m_D} \, < \, m_M^2} \left\{ egin{array}{l} m_
u \sim -rac{m_D^2}{m_M} \; ext{(light)} \ m_N \sim m_M \; ext{(heavy)} \end{array}
ight.$$



If $m_M \sim 10^{14}$ GeV one can get $m_\nu \sim 0.1$ eV with $Y_\nu \sim \mathcal{O}(1)$

Sneutrino sector/masses

$$W_{\text{MSSM}+\nu\tilde{\nu}} = \epsilon_{ij} \left[\mu H_1^i H_2^j + Y_{\nu} \hat{H}_2^i \hat{L}^j \hat{N} \right] + \frac{1}{2} \hat{N} m_{M} \hat{N}; \hat{N} = (\tilde{\nu}_{R}^*, (\nu_{R})^c)$$

$$V_{\text{soft}}^{\tilde{\nu}} = m_{\tilde{L}}^2 \tilde{\nu}_{L}^* \tilde{\nu}_{L} + m_{\tilde{R}}^2 \tilde{\nu}_{R}^* \tilde{\nu}_{R} + (Y_{\nu} A_{\nu} H_2^2 \tilde{\nu}_{L} \tilde{\nu}_{R}^* + m_{M} B_{\nu} \tilde{\nu}_{R} \tilde{\nu}_{R} + \text{h.c.}).$$

$$\mathcal{L}_{\tilde{\nu}\,H} = \left\{ \begin{array}{l} -\frac{g m_{D} m_{M}}{2 M_{W} \sin \beta} \left[(\tilde{\nu}_{L} \tilde{\nu}_{R} + \tilde{\nu}_{L}^{*} \tilde{\nu}_{R}^{*}) (H \sin \alpha + h \cos \alpha) \right] \\ -i \frac{g m_{D} m_{M}}{2 M_{W} \sin \beta} \left[(\tilde{\nu}_{L} \tilde{\nu}_{R} - \tilde{\nu}_{L}^{*} \tilde{\nu}_{R}^{*}) A \cos \beta \right] \\ + \text{usual int. terms } \tilde{f} \tilde{f} h_{i}, \ \tilde{f} \tilde{f} h_{i} h_{i} \end{array} \right.$$

4 mass eigenstates $\left\{ egin{array}{l} ilde{
u}_+, ilde{ extbf{N}}_+
ightarrow ext{CP even} \\ ilde{
u}_-, ilde{ extbf{N}}_-
ightarrow ext{CP odd} \end{array}
ight.$

$$m_{\tilde{\nu}_{+},\tilde{\nu}_{-}}^{2} = m_{\tilde{L}}^{2} + \frac{1}{2}M_{Z}^{2}\cos 2\beta \mp 2m_{D}^{2}(A_{\nu} - \mu\cot\beta - B_{\nu})/m_{M},$$

$$m_{\tilde{N}_{+},\tilde{N}_{-}}^{2} = m_{M}^{2} \pm 2B_{\nu}m_{M} + m_{\tilde{R}}^{2} + 2m_{D}^{2}.$$

seesaw limit: $m_M >>$ all the other scales involved

Higgs Boson Sector

The Higgs sector content in the MSSM-seesaw is as in the MSSM

3 neutral bosons :
$$h, H (\mathcal{CP} = +1), A (\mathcal{CP} = -1)$$

2 charged bosons : H^+, H^-

two ind. parameters
$$\to an \beta = v_2/v_1$$
 and $M_A{}^2 = -m_{12}^2 (an \beta + \cot \beta)$ $m_{H,h \; \text{tree}}^2 = \frac{1}{2} \left[M_A^2 + M_Z^2 \pm \sqrt{(M_A^2 + M_Z^2)^2 - 4 M_Z^2 M_A^2 \cos^2 2 \beta} \right]$ $m_{h \; \text{tree}}^2 \le M_Z |\cos 2\beta| \le M_Z \qquad m_{h_{\text{SM}}}^2 = \frac{1}{2} \lambda v^2$

Higher-order corrections to m_h
 M_h, M_H → poles of the propagator matrix → solution of the eq:

$$\left[p^2 - m_{h \text{ tree}}^2 + \hat{\Sigma}_{hh}(p^2)\right] \left[p^2 - m_{H \text{ tree}}^2 + \hat{\Sigma}_{HH}(p^2)\right] - \left[\hat{\Sigma}_{hH}(p^2)\right]^2 = 0$$

$$\hat{\Sigma}_{hh}(p^2) = \Sigma_{hh}(p^2) + \delta Z_{hh}(p^2 - m_{h, \text{tree}}^2) - \delta m_h^2$$

 $\delta m_h^2 = f(\delta M_A^2, \delta M_Z^2, \delta T_H, \delta T_h, \delta \tan \beta)$

Renormalization conditions

Different Renormalization schemes adopted

OS

$$\begin{split} \hat{\Sigma}'_{hh}(\textit{m}_{h,\text{tree}}^2) &= 0 \ \Rightarrow \delta \textit{Z}_{\mathcal{H}_2}^{OS} = -\operatorname{Re} \Sigma'_{hh\mid\alpha=0} \\ \hat{\Sigma}'_{HH}(\textit{m}_{H,\text{tree}}^2) &= 0 \ \Rightarrow \delta \textit{Z}_{\mathcal{H}_1}^{OS} = -\operatorname{Re} \Sigma'_{HH\mid\alpha=0} \\ \delta \text{tan} \beta^{OS} &= \frac{1}{2} \left(\delta \textit{Z}_{\mathcal{H}_2}^{OS} - \delta \textit{Z}_{\mathcal{H}_1}^{OS} \right) \ . \end{split}$$

too large corrections in the MSSM ⇒ big higher order corrections JHEP 0702(2007)047, Heinemeyer, Frank, Hollik, Weiglein gauge dependent corrections at the one-loop level (Phys.Rev.D 66, Freitas, Stockinger)

DR

$$\begin{split} \delta Z_{\mathcal{H}_1}^{\overline{\mathrm{DR}}} &= \left[\delta Z_{\mathcal{H}_1}^{\mathrm{OS}}\right]^{\mathrm{div}}, \delta Z_{\mathcal{H}_2}^{\overline{\mathrm{DR}}} = \left[\delta Z_{\mathcal{H}_2}^{\mathrm{OS}}\right]^{\mathrm{div}} \\ \delta \mathsf{tan}\beta^{\,\overline{\mathrm{DR}}} &= \frac{1}{2} \left(\delta Z_{\mathcal{H}_2}^{\overline{\mathrm{DR}}} - \delta Z_{\mathcal{H}_1}^{\overline{\mathrm{DR}}}\right) \;. \\ &\left[\,\right]^{\mathrm{div}} \mathsf{terms} \propto \Delta \equiv 2/\varepsilon - \gamma_{\mathrm{E}} + \mathsf{log}(4\pi) \end{split}$$

The renormalization scale, $\mu_{\overline{DR}}$ has to be set

• m $\overline{
m DR}$ [] $^{
m div}$ terms $\propto \Delta_m \equiv \Delta - \log(m_M^2/\mu_{\overline
m DR}^2)
ightarrow \mu_{\overline
m DR} = m_M$

Present work: One Loop Calculation to m_h

S.H., M. J. Herrero, S.P., A.M. Rodriguez-Sanchez, arXiv:1007.5512v2 [hep-ph]

• One-loop $\nu/\tilde{\nu}$ corrections to $\hat{\Sigma}_{hh}^{\nu/\tilde{\nu}}$, $\hat{\Sigma}_{HH}^{\nu/\tilde{\nu}}$ and $\hat{\Sigma}_{hH}^{\nu/\tilde{\nu}}$ with Feynarts and FormCalc

http://www.feynarts.de/by Thomas Hahn

- New Feynman rules neu/sneu sector in an available model file
- One point functions and two point functions involved
- Cancellation of divergences in OS, DR, mDR
- Yukawa and gauge contributions

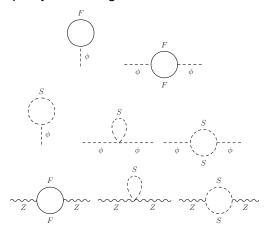
$$\hat{\Sigma}(\rho^2)|_{\text{full}} = \hat{\Sigma}(\rho^2)|_{\text{gauge}} + \hat{\Sigma}(\rho^2)|_{\text{Yukawa}} \ ; \hat{\Sigma}(\rho^2)|_{\text{gauge}} = \hat{\Sigma}(\rho^2)|_{\text{MSSM}}$$

- Study seesaw limit $m_D << m_M$ and Dirac limit $m_M = 0$
- Calculation of the new Higgs corrections Δm_h^{mDR} coming from the $\nu/\tilde{\nu}$ sector:

$$\Delta m_h^{m\overline{\mathrm{DR}}} = M_h^{\nu/\tilde{\nu}} - M_h$$

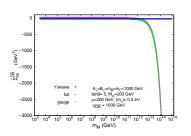
One Loop Calculation to m_h

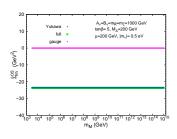
Set of one-loop Feynman diagrams:

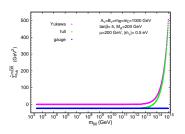


• Parameters of the MSSM-Seesaw: m_M , $\tan \beta$, M_A , μ , A_{ν} , $m_{\tilde{L}}$, $m_{\tilde{B}}$, m_{ν} , B_{ν} and p

Results: Dependence of $\hat{\Sigma}_{hh}$ on m_M







- For $10^3 < m_M < 10^{12} \text{ GeV} \rightarrow \hat{\Sigma}_{hh}^{\overline{DR}} = \hat{\Sigma}_{hh}^{OS} = \hat{\Sigma}_{hh}^{m\overline{DR}} \rightarrow \text{gauge}$
- For $m_M > 10^{12}$ GeV very different behaviour :
- $\hat{\Sigma}_{hh}^{ ext{OS}}\sim\hat{\Sigma}_{hh}^{ ext{OS}}|_{ ext{gauge}}$, no dependence with m_M
- $\hat{\Sigma}_{hh}^{m\overline{
 m DR}}$ grow with m_M due to $Y_
 u \propto \sqrt{m_M}$
- $\hat{\Sigma}_{hh}^{\overline{
 m DR}}$ has huge growing with m_M due to $Y_{
 u} \propto \sqrt{m_M}$ and extra $\log(m_M/\mu_{\overline{
 m DR}})$

The seesaw limit

• expansion of $\hat{\Sigma}_{hh}^{\overline{DR}}, \hat{\Sigma}_{hh}^{\overline{OS}}, \hat{\Sigma}_{hh}^{m\overline{DR}}$ in powers of the seesaw parameter $\xi = \frac{m_D}{m_M}$

$$\hat{\Sigma}(p^2) = \underbrace{\left(\hat{\Sigma}(p^2)\right)_{m_D^0}}_{\text{gauge-MSSM}} + \underbrace{\left(\hat{\Sigma}(p^2)\right)_{m_D^2} + \left(\hat{\Sigma}(p^2)\right)_{m_D^4} + \dots}_{\text{Yukawa}}$$

- $A_{
 u}=\mu=B_{
 u}=0$ and universal SOFT SUSY masses $m_{ ilde{l}}=m_{ ilde{R}}=m_{
 m SUSY}$
- expand in powers of $\frac{M_Z}{m_M}$, $\frac{M_A}{m_M}$, $\frac{p}{m_M}$ and $\frac{m_{\rm SUSY}}{m_M}$
- The main difference between the OS scheme and the $\overline{\rm DR}/{\rm m}\overline{\rm DR}$ schemes appears in the Yukawa part, especially in the term of $\mathcal{O}(m_D^2)$

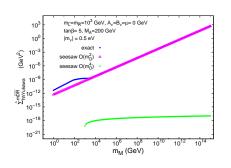
$O(m_D^2)$ relevant term

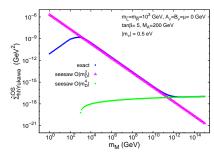
$$\begin{split} \left(\hat{\Sigma}_{hh}^{\overline{\mathrm{DR}}}(p^2)\right)_{m_D^2} &= \left(\frac{g^2 m_D^2}{64 \pi^2 M_W^2 \sin^2 \beta}\right) \left[1 - \log \left(\frac{m_M^2}{\mu_{\overline{\mathrm{DR}}}^2}\right)\right] \left[-2 M_A^2 \cos^2 (\alpha - \beta) \cos^2 \beta \right. \\ &\quad \left. + 2 p^2 \cos^2 \alpha - M_Z^2 \sin \beta \sin(\alpha + \beta) \left(2 \left(1 + \cos^2 \beta\right) \cos \alpha - \sin 2\beta \sin \alpha\right)\right] \\ \left(\hat{\Sigma}_{hh}^{\overline{\mathrm{mDR}}}(p^2)\right)_{m_D^2} &= \left(\hat{\Sigma}_{hh}^{\overline{\mathrm{DR}}}(p^2)\right)_{m_D^2 \mid \mu_{\overline{\mathrm{DR}}} = m_M} \\ \left(\hat{\Sigma}_{hh}^{\mathrm{OS}}(p^2)\right)_{m_D^2} &\propto \underbrace{\frac{g^2 m_D^2 (M_{\mathrm{EW}}^2, m_{\mathrm{SUSY}}^2)}{m_M^2 M_Z^2}} \end{split}$$

 $\delta^{\rm OS} Z_{hh}|_{\rm finite}$ and $\delta^{\rm OS} an eta|_{\rm finite}$ exactly cancel the leading $O(m_D^2)$ terms that appear in $\hat{\Sigma}_{hh}^{\overline{
m DR}}(p^2)$

<ロ > < 回 > < 回 > < 巨 > く 巨 > 豆 釣 < ②

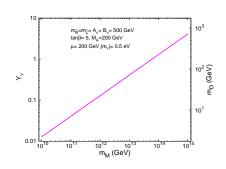
EXACT versus SEESAW LIMIT $m\overline{\rm DR}$ and OS

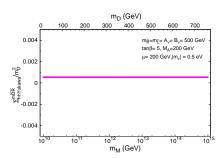




- seesaw limit approximates very well the exact results for $m_{\rm M}>M_{\rm EW}, m_{\rm SUSY}$
- O(m_D^2) dominates the m $\overline{\rm DR}$ Yukawa contribution \rightarrow relevant size for $m_M \geq 10^{14}$ GeV
- negiglible OS Yukawa contribution \rightarrow decreases with m_M up to $m_M \leq 10^{12}$ GeV For $m_M \geq 10^{12}$ the O(m_D^4/m_M^2) \propto constant dominates

Decoupling/Non-decoupling behaviour of m_M

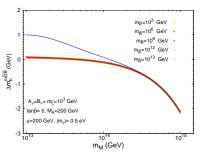


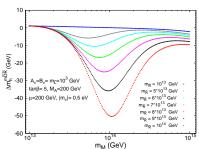


- growing of $\hat{\Sigma}_{hh}^{m\overline{
 m DR}}(p^2)$ with m_M ONLY due to Y_{ν} dependence on m_M $\to Y_{\nu} \propto \sqrt{m_M}$
- constant non-decoupling behaviour in the Majorana case
- perturbative regime for $m_M \lesssim 10^{15} \text{ GeV}$

Results for $\Delta m_h^{ ext{m}\overline{ ext{DR}}} = M_h^{ u/ ilde{ u}} - M_h$

$\Delta m_h^{ ext{m}\overline{ ext{DR}}}$ dependence on m_M for different $m_{ ilde{R}}$

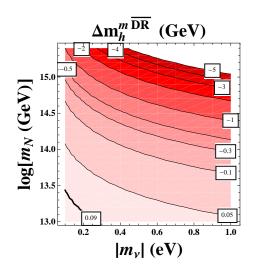




- For $m_M \le 5 \times 10^{13}$ GeV tiny positive corrections, $\Delta m_h^{m\overline{\rm DR}} < 0.1$ GeV
- For $m_M \ge 5 \times 10^{13}$ GeV \Rightarrow negative Higgs mass corrections, they increase with m_M up to a few GeV.
- The corrections are independent of $m_{\tilde{R}}$ when $m_{\tilde{R}} < 10^{13} \text{ GeV}$
- For $m_{\tilde{R}} \geq 10^{13} \text{ GeV} \Rightarrow \Delta m_h^{\text{m}\overline{\text{DR}}}$ can be very big reaching its maximum at $m_{\tilde{R}} = m_M \; (\Delta m_h^{\text{m}\overline{\text{DR}}} = -50 \; \text{GeV} \; \text{for} \; m_{\tilde{R}} = m_M = 10^{14} \; \text{GeV})$

Contourplot of $\Delta m_h^{ ext{m}\overline{ ext{DR}}}$ as a function of m_N and $|m_ u|$

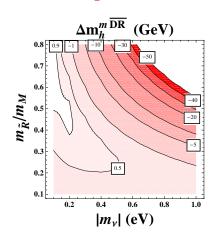
$$A_{\nu} = B_{\nu} = m_{\tilde{L}} = m_{\tilde{R}} = 10^3 \text{ GeV}, \tan \beta = 5, M_A = \mu = 200 \text{ GeV}$$



- $\Delta m_h^{\text{m}\overline{\text{DR}}} < 0.1 \text{ GeV}$ if $10^{13} \text{ GeV} < m_M < 10^{14} \text{ GeV}$ (or, equivalently, $10^{13} \text{ GeV} < m_N < 10^{14} \text{ GeV}$) and $0.1 \text{ eV} < |m_\nu| < 1 \text{ eV}$
- Δm_h^{mDR} change to negative sign and grow in size for larger m_M and/or $|m_\nu|$ values (up to ~ -5 GeV for $m_M = 10^{15}$ GeV and $|m_\nu| = 1$ eV)

Contourplot of $\Delta m_h^{ m m\overline{DR}}$ as a function of $m_{ ilde{R}}/m_M$ and $|m_ u|$

$$m_M=10^{14}~{
m GeV},$$
 $A_
u=B_
u=m_{\tilde L}=10^3~{
m GeV}, aneta=5, M_A=\mu=200~{
m GeV}$



• Very large negative corrections for large m_M and $m_{\tilde{R}}$, of $\mathcal{O}(10^{14})$ GeV, and $|m_{\nu}|$ of $\mathcal{O}(1)$ eV: $\Delta m_h^{\text{mDR}} \sim -30$ GeV for $m_M = 10^{14}$ GeV, $m_{\tilde{R}}/m_M = 0.7$ and $|m_{\nu}| = 0.6$ eV

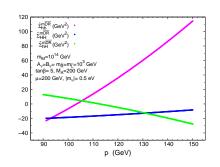
Conclusions

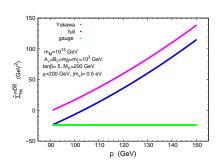
- The MSSM Higgs sector is sensitive to the heavy Majorana scale
- The radiative corrections to the higgs mass h_0 can be relevant when $m_M > 10^{13}$ GeV, bigger than the anticipated experimental precision (LHC-0.2 GeV, ILC-0.05 GeV) \Rightarrow they should be taken into account
- The corresponding contribution of dirac neutrinos is negligible and completely indistinguisable of the MSSM with no masive neutrinos
- The generalization to the realistic 3-neutrino-sneutrino case is appealing and could give extra contributions due to the big mixing angles as it happens in some LFV observables. (work in progress)

Dependence of $\hat{\Sigma}_{hh}^{m\overline{DR}}(p^2)$ on tan β , M_A , μ , A_{ν} , $m_{\tilde{L}}$, B_{ν}

- Reference chosen values: $\tan \beta = 5$, $M_A = 200 \, \text{GeV}$, $A_{\nu} = 1000 \, \text{GeV}$, $\mu = 200 \, \text{GeV}$
- For tan eta > 5 and $M_A >$ 150 GeV $ightarrow \hat{\Sigma}_{hh}^{m\overline{
 m DR}}(p^2) \sim$ constant
- $\hat{\Sigma}_{hh}^{m\overline{
 m DR}}(p^2)$ independent of $A_{
 u}$ and of μ for $[-1000,1000]~{
 m GeV}$
- The gauge part increases logarithmically in modulus with the soft breaking mass $m_{\tilde{l}}$
- The behavior with B_{ν} is flat for most of the explored range, except at very large values, $B_{\nu} > 10^{12} \text{ GeV}$
- Dependence on $m_{\tilde{R}}$ (not constrained by data):
 - The gauge part is completely independent of $m_{\tilde{R}}$. The $\tilde{\nu}_R$, ν_R don't interact weakly with the Z boson.
 - ullet The Yukawa part insensitive to $m_{ ilde{R}}$ up to $m_{ ilde{R}}\sim 10^{13}~{
 m GeV}$

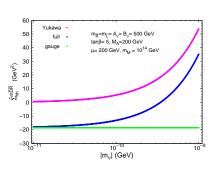
Dependence of $\hat{\Sigma}_{hh}^{m\overline{DR}}(p^2)$ on p

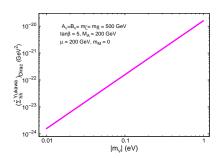




- Strong dependence of $\hat{\Sigma}_{hh}$ with the external momentum \to usual p=0 aprrox not valid
- $\bullet~$ The gauge part is quasi insensitive to p $\to \hat{\Sigma}_{hh}^{gauge} \sim p^2 M_Z^2/m_{SUSY}^2$
- The yukawa part increases with p \to $\left(\hat{\Sigma}_{nh}^{\overline{DR}}(p^2)\right)_{m_D^2}\sim Y_{\nu}^2p^2$

Dependence of $\hat{\Sigma}_{hh}^{m\overline{DR}}(p^2)$ on $m_{\nu} \to Majorana$ versus Dirac





- In both cases $\hat{\Sigma}_{hh}$ grow with the neutrino mass, due to the Y_{ν} dependence on m_{ν}
 - Dirac case $\to Y_{\nu} = m_{\nu}/v_2 \to O(10^{-12})$
 - Majorana case $\rightarrow Y_{\nu} = m_D/v_2 \sim \sqrt{|m_{\nu}|m_M}/v_2$

Results for $\Delta m_h^{\text{m}\overline{\text{DR}}} = M_h^{\nu/\tilde{\nu}} - M_h$

$\Delta m_h^{ m m\overline{DR}}$ dependence on m_M for different B_{ν} and on m_{ν}

