Composite Higgs Physics at a Linear Collier

LCSW2011

Granada, Sept. 26-30 2011

Christophe Grojean

(christophe.grojean@cern.ch)

CERN-TH

The UV behavior of the weak Goldstone

symmetry breaking: new phase with more degrees of freedom massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $\frac{SU(2)_L \times SU(2)_R}{SU(2)_V}$

The UV behavior of the weak Goldstone

symmetry breaking: new phase with more degrees of freedom

massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons

UV behavior of these Goldstone's?

Lee, Quigg & Thacker '77

Christophe Grojean

Composite Higgs Physics at a LC 2

Granada, 27th September 2011

 $SU(2)_L \times SU(2)_R$

\}

The UV behavior of the weak Goldstone

symmetry breaking: new phase with more degrees of freedom massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $SU(2)_{L} \times SU(2)_{R}$

> UV behavior of these Goldstone's?

$$\mathcal{L}_{\text{mass}} = m_W^2 W^+_\mu W^{\mu -} + \frac{1}{2} m_Z^2 Z_\mu Z^\mu = \frac{v^2}{4} \text{Tr} \left(D_\mu \Sigma^\dagger D_\mu \Sigma \right)$$

 $\Sigma = e^{i\sigma^{a}\pi^{a}/v}$ Goldstone of $SU(2)_{L} \times SU(2)_{R}/SU(2)_{V}$

Lee, Quigg & Thacker '77

Christophe Grojean

Composite Higgs Physics at a LC 2

Lee, Quigg & Thacker '77

Granada, 27th September 2011

Christophe Grojean

The UV behavior of the weak Goldstone symmetry breaking: new phase with more degrees of freedom massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $\frac{SU(2)_L \times SU(2)_R}{SU(2)_V}$ UV behavior of these Goldstone's? $\Sigma = e^{i\sigma^a \pi^a / v}$ $\mathcal{L}_{\text{mass}} = m_W^2 W^+_\mu W^{\mu} - \frac{1}{2} m_Z^2 Z_\mu Z^\mu = \frac{v^2}{\Lambda} \text{Tr} \left(D_\mu \Sigma^\dagger D_\mu \Sigma \right)$ Goldstone of $SU(2)_L x SU(2)_R / SU(2)_V$ $\mathcal{L}_{\text{mass}} = \frac{1}{2} (\partial_{\mu} \pi^{a})^{2} - \frac{1}{6v^{2}} \left((\pi^{a} \partial_{\mu} \pi^{a})^{2} - (\pi^{a})^{2} (\partial_{\mu} \pi^{a})^{2} \right) + \dots$ contact interaction growing with energy $\mathcal{A}\left(\pi^{a}\pi^{b} \to \pi^{c}\pi^{d}\right) = \mathcal{A}(s,t,u)\delta^{ab}\delta^{cd} + \mathcal{A}(t,s,u)\delta^{ac}\delta^{bd} + \mathcal{A}(u,t,s)\delta^{ad}\delta^{bc}$ $\mathcal{A}(s,t,u) = \frac{s}{v^2} \quad \text{Weinberg's LET}$ the behavior of this amplitude is not consistent above $4\pi v$ (≈ 1 ÷3TeV)

Lee, Quigg & Thacker '77

Christophe Grojean

Composite Higgs Physics at a LC 2

Higgs as a PGB: a natural extension of SM

One solution to the hierarchy pb:

Higgs transforms non-linearly under some global symmetry

Higgs=Pseudo-Goldstone boson (PGB)

SO(4)/SO(3) $W^{\pm}L \& ZL$

3 Goldstone's

Chacko, Batra '08

Christophe Grojean

Composite Higgs Physics at a LC 3

Granada, 27th September 2011

Higgs as a PGB: a natural extension of SM

One solution to the hierarchy pb:

Higgs transforms non-linearly under some global symmetry

Higgs=Pseudo-Goldstone boson (PGB)

SO(4)/SO(3) $W^{\pm}L \& ZL$ $W^{\pm}_{l} \& Z_{l} \& h$ at least a 4th Goldstone 3 Goldstone's

Chacko, Batra '08

Composite Higgs Physics at a LC 3

Granada, 27th September 2011

Higgs as a PGB: a natural extension of SM

One solution to the hierarchy pb:

Higgs transforms non-linearly under some global symmetry

Higgs=Pseudo-Goldstone boson (PGB)

How to probe the composite nature of the Higgs?

I. Anomalous couplings

Christophe Grojean

Composite Higgs Physics at a LC 4

A single scalar degree of freedom neutral under $SU(2)_L \times SU(2)_R / SU(2)_L$

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

A single scalar degree of freedom neutral under $SU(2)_L xSU(2)_R / SU(2)_L$

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$

'a', 'b' and 'c' are arbitrary free couplings
For a=1: perturbative unitarity in elastic channels WW \rightarrow WW
For b = a²: perturbative unitarity in inelastic channels WW \rightarrow hh

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

A single scalar degree of freedom neutral under $SU(2)_L \times SU(2)_R / SU(2)_L$

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$

'a', 'b' and 'c' are arbitrary free couplings
For a=1: perturbative unitarity in elastic channels WW \rightarrow WW
For b = a²: perturbative unitarity in inelastic channels WW \rightarrow hh
For ac=1: perturbative unitarity in inelastic WW $\rightarrow \psi \psi$

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

A single scalar degree of freedom neutral under $SU(2)_L \times SU(2)_R / SU(2)_L$

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$

'a', 'b' and 'c' are arbitrary free couplings
For a=1: perturbative unitarity in elastic channels WW \rightarrow WW
For b = a²: perturbative unitarity in inelastic channels WW \rightarrow hh
For ac=1: perturbative unitarity in inelastic WW $\rightarrow \psi \psi$
'a=1', 'b=1' & 'c=1' define the SM Higgs
Higgs properties depend on a single unknown parameter (m_H)
 $\mathcal{L}_{\text{EWSB}}$ can be rewritten as $D_{\mu}H^{\dagger}D_{\mu}H$
 $H = \frac{1}{\sqrt{2}}e^{i\sigma^{a}\pi^{a}/v} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$
h and π^{a} (ie W_L andZ_L) combine to form a linear representation of SU(2)_L×U(1)_Y

Christophe Grojean

What is a composite Higgs?

A σ particle that combines with W_L and Z_L to form a SU(2) doublet that acquires a vev

 $SU(2)_L \times U(1)_Y$ linearly realized \Leftrightarrow Standard Model \Leftrightarrow a=b=c=1

renormalizable level = uniqueness

What is a composite Higgs?

A σ particle that combines with W_L and Z_L to form a SU(2) doublet that acquires a vev

deviations of Higgs couplings originate from higher dimensional operators

$$\left(\partial_{\mu}|H|^{2}
ight)^{2} |H|^{2}\bar{\psi}H\psi |H|^{2}B_{\mu\nu}B^{\mu\nu} |H|^{2}G_{\mu\nu}G^{\mu\nu}$$

Christophe Grojean

Composite Higgs Physics at a LC 7

What is a composite Higgs?

A σ particle that combines with W_L and Z_L to form a SU(2) doublet that acquires a vev

deviations of Higgs couplings originate from higher dimensional operators

$$\left(\partial_{\mu}|H|^{2}\right)^{2} |H|^{2}\bar{\psi}H\psi |H|^{2}B_{\mu\nu}B^{\mu\nu} |H|^{2}G_{\mu\nu}G^{\mu\nu}$$

irrelevant if Higgs is a Goldstone

Christophe Grojean

Composite Higgs Physics at a LC 7

Anomalous composite-Higgs couplings

Giudice, Grojean, Pomarol, Rattazzi '07

$$\mathcal{L} \supset \frac{c_H}{2f^2} \partial^{\mu} \left(|H|^2 \right) \partial_{\mu} \left(|H|^2 \right) \qquad c_H \sim \mathcal{O}(1)$$

$$H = \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix} \longrightarrow \mathcal{L} = \frac{1}{2} \left(1 + c_H \frac{v^2}{f^2} \right) (\partial^{\mu} h)^2 + \dots$$

Modified
Higgs propagatorHiggs couplings
rescaled by $\frac{1}{\sqrt{1 + c_H \frac{v^2}{f^2}}} \sim 1 - c_H \frac{v^2}{2f^2} \equiv 1 - \xi/2$ $\xi = v^2/f^2$
 $a = 1 - \xi/2$ $\xi = v^2/f^2$
 $b = 1 - 2\xi$ $c = 1 - \xi/2$

Christophe Grojean

Composite Higgs Physics at a LC 8

Deformation of the SM Higgs: current constraints

Christophe Grojean

Composite Higgs Physics at a LC "

Deformation of the SM Higgs: LHC constraints

the SM exclusion bounds are easily rescaled in the $(m_{H,a})$ plane

Espinosa, Grojean, Muehlleitner '11

LHC is now a Higgs exploring machine (and it has quickly surpassed Tevatron)

Christophe Grojean

Composite Higgs Physics at a LC

Deformation of the SM Higgs: LHC constraints

the SM exclusion bounds are easily rescaled in the $(m_{H,a})$ plane

Espinosa, Grojean, Muehlleitner '11

O rescaling combination ≠ combination of the rescaled channels (can be particularly important far away from SM)

O effeciency of the cuts may also depends on ξ

Christophe Grojean

Composite Higgs Physics at a LC

h→WW can dominate even for low Higgs mass

BRs remain SM like except for very large values of v/f

Christophe Grojean

Composite Higgs Physics at a LC 14

Higgs anomalous couplings @ LHC

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \dots \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} + c_2 \frac{h^2}{v^2} + \dots \right)$$

$$a = \sqrt{1 - \xi} \qquad b = 1 - 2\xi \qquad b_3 = -\frac{4}{3} \xi \sqrt{1 - \xi} \qquad c = \left(\sqrt{1 - \xi}, \frac{1 - 2\xi}{\sqrt{1 - \xi}} \right) \qquad c_2 = -(\xi, 4\xi)$$

$$Minimal composite Higgs model (MCHM): SO(5)/SO(4)$$

 $\Gamma(h \to f\bar{f}) = (2c-1)\,\Gamma(h \to f\bar{f})_{\rm SM} \quad \Gamma(h \to ZZ) = (2a-1)\,\Gamma(h \to ZZ)_{\rm SM}$

Christophe Grojean

Composite Higgs Physics at a LC 15

How to probe the composite nature of the Higgs?

2. Strong scattering

Christophe Grojean

Composite Higgs Physics at a LC 16

Granada, 27th September 2011

C

How to probe the strong dynamics? Look at pair production of strong states

Giudice, Grojean, Pomarol, Rattazzi '07

strong WW scattering:

no exact cancellation of the growing amplitudes

 $\mathcal{A}\left(W_{L}^{a}W_{L}^{b} \to W_{L}^{c}W_{L}^{d}\right) = \mathcal{A}(s,t,u)\delta^{ab}\delta^{cd} + \mathcal{A}(t,s,u)\delta^{ac}\delta^{bd} + \mathcal{A}(u,t,s)\delta^{ad}\delta^{bc} \quad \mathcal{A} = \underbrace{\left(1-a^{2}\right)\frac{s}{v^{2}}}_{v^{2}}$

large Lint needed

not competitive with the measurement of 'a' via anomalous couplings

How to probe the strong dynamics? Look at pair production of strong states

Giudice, Grojean, Pomarol, Rattazzi '07

strong WW scattering

no exact cancellation of the growing amplitudes

 $\mathcal{A}\left(W_{L}^{a}W_{L}^{b} \to W_{L}^{c}W_{L}^{d}\right) = \mathcal{A}(s,t,u)\delta^{ab}\delta^{cd} + \mathcal{A}(t,s,u)\delta^{ac}\delta^{bd} + \mathcal{A}(u,t,s)\delta^{ad}\delta^{bc} \quad \mathcal{A} = \left(1 - a^{2}\right)\frac{s}{v^{2}}$

large Lint needed

not competitive with the measurement of 'a' via anomalous couplings

strong double Higgs production

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

$$\mathcal{A}\left(Z_L^0 Z_L^0 \to hh\right) = \left(W_L^+ W_L^- \to hh\right) = \left(b - a^2\right) \frac{s}{v^2}$$

access to a new interaction, 'b'

distinction between 'active' (higgs) and 'passive' (dilaton) scalar in EWSB dynamics

Christophe Grojean

Composite Higgs Physics at a LC

Double Higgs production: 'b' and 'd₃' couplings

Christophe Grojean

Strong Higgs production: (3L+jets) analysis

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

strong boson scattering \Leftrightarrow strong Higgs production

$$\mathcal{A}\left(Z_L^0 Z_L^0 \to hh\right) = \mathcal{A}\left(W_L^+ W_L^- \to hh\right) = \frac{c_H s}{f^2}$$

Dominant backgrounds: Wll4j, $t\bar{t}W2j$, $t\bar{t}2W(j)$, 3W4j...

forward jet-tag, back-to-back lepton, central jet-veto

v/f	1	$\sqrt{0.8}$	$\sqrt{0.5}$
significance @ 300 fb^{-1}	4.0	2.9	1.3
luminisity for $5\sigma ~(\text{fb}^{-1})$	450	850	3500

Christophe Grojean

Composite Higgs Physics at a LC 19

⇐ good motivation to SLHC

Measuring the non-linearities of the Higgs

Contino, Grojean, Pappadopoulo, Rattazzi, Thamm'in progress

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + \frac{2a}{v} \frac{h}{v} + b \frac{h^2}{v^2} \right) \qquad V(h) = \frac{1}{2} m_h^2 h^2 + \frac{d_3}{6} \left(\frac{3m_h^2}{v} \right) h^3 + \frac{1}{2} m_h^2 h^2 + \frac{d_3}{6} \left(\frac{3m_h^2}{v} \right) h^3 + \frac{1}{2} m_h^2 h^2 + \frac{d_3}{6} \left(\frac{3m_h^2}{v} \right) h^3 + \frac{1}{2} m_h^2 h^2 + \frac{1}{2}$$

Composite Higgs Physics at a LC 20

O (S)LHC is barely sensitive to d_3 and b O ILC has a sensitivity on d_3 but not on b O CLIC can probe both d_3 and b

CLIC seems a unique machine to testing strong EWSB

Christophe Grojean

How to probe the composite nature of the Higgs?

3. Identifying discrete symmetries of strong sector

Christophe Grojean

Composite Higgs Physics at a LC 21

Granada, 27th September 2011

C

Geometry of Coset from $W^+W^- \rightarrow 3h$

=0 for symmetric coset

mediated by SM gauge interactions (breaking of coset structure)

Granada, 27th September 2011

Christophe Grojean

D3

۵

a

$W^+W^- \rightarrow 3h @ CLIC$

Contino, Grojean, Pappadopoulo, Rattazzi, Thamm'in progress

non-symmetric coset

Christophe Grojean

Composite Higgs Physics at a LC 23

Granada, 27th September 2011

Conclusions

EW interactions need Goldstone bosons to provide mass to W, Z EW interactions also need a UV moderator/new physics to unitarize WW scattering amplitude

We'll need another Gargamelle experiment to discover the still missing neutral current of the SM: the Higgs weak NC ⇔ gauge principle Higgs NC ⇔ ?

Strong EWSB w/o an elementary Higgs can be very similar to SM it might take some time to decipher the true dynamics of EWSB!

Christophe Grojean

Composite Higgs Physics at a LC 24