

Tomas Lastovicka (Czech Academy of Sciences) Christian Grefe (CERN and University of Bonn) Jan Strube (CERN) Frederic Teubert (CERN) Blai Pie Valls (University of Barcelona)

ANALYSES OF LIGHT HIGGS DECAYS FOR THE CLIC CDR

Overview

- OLIC environment
- $H \rightarrow bb$
 - Largest BR in the Standard Model
 - Flavour Tagging (in the presence of background)
- $H \rightarrow \mu\mu$
 - Coupling to second-generation fermions
 - Momentum resolution (in the forward region)
- Summary

The CLIC environment

- OLIC_SID detector
 - Similar to SiD detector
 - 27 mm radius inner vertex layer
 - 7.5 λ W-HCAL barrel
 - Tracking coverage down to 10°

The CLIC beams

- 0.5 ns bunch spacing
- 312 bunches / train
- 50 Hz train repetition rate
- 3.2 events $\gamma \gamma \rightarrow hadrons / BX$ →19 TeV visible energy →Reduced to 1.2 TeV in readout window

The CDR benchmark point

Channel	Cross Section (fb)
$\nu_e \bar{\nu}_e H(\to bb)$	285
$\nu_e \bar{\nu}_e H(\to c\bar{c})$	15
$q\bar{q} u\bar{ u}$	1305
$q\bar{q}e\bar{ u}_e$	5255
qq	3076
$q\bar{q}e^+e^-$	3341
$\nu_e \bar{\nu}_e H(\rightarrow \mu^+ \mu^-)$	0.12
$\mu^+\mu^- uar u$	132
$\mu^{+}\mu^{-}e^{+}e^{-}$	5.4

Standard Model m_H=120 GeV Signal channel

Setup

- Whizard 1.95 for generation of signal events
- Operation Pythia 6.4 for hadronisation
- GEANT 4 simulation
- \odot 60 BX $\gamma\gamma
 ightarrow \mathrm{hadrons}$ for each event
- Full reconstruction (PandoraPFA)
 - 100 ns readout window in HCAL barrel
 - 10 ns everywhere else
- 2 / ab measurement of BR

Higgs decays to bottom and charm

Pre-selection

- Tight PFO timing cuts
- FastJet k_t algorithm,
 R_{max}=0.7
 - Try to force into two jets
 - Durham algorithm fails in presence of background

0.6

0.8

0.9

0.8

Event selection

- ΔR(jets)
- $E_{tot} = sum of E_{jet}$
- $N_{leptons}, N_{\gamma}$
- Jet acoplanarity
- Sum of flavour tags

Choose optimal point in
Stat. Error vs. Efficiency
Purity vs. Efficiency

Results

Out-and-count method

- Measure signal and background events in "signal box" (NN cut)
- Change definition from b to background and c to signal to measure h \rightarrow cc

	$h \to b \overline{b}$	$h \to c \bar{c}$
Signal efficiency	54.6 %	15.2 %
Stat. Uncertainty on σ x BR	0.22 %	3.24 %

Higgs decays to muons

Higgs decay to muons

- Rare decay, BF ~ 10⁻⁴
- \rightarrow Tests excellent momentum resolution

CLIC_SiD momentum resolution in different regions of theta

Reconstructed di-muon mass for different values of momentum resolution

Analysis Strategy

- Reconstruct two identified muons
- Boosted Decision trees classifier
- Likelihood fit
- Electron Tagging
 Muon momentum resolution study

Results

No PFO timing cuts
 BDT helps with low signal efficiency of rectangular cuts

 Average of three independent likelihood fits

	$h \to \mu^+ \mu^-$
Signal efficiency	25 %
Stat. Uncertainty on σ x BR	23 %

Further improvements (preliminary)

- LumiCal and BeamCal not in the full simulation
- LumiCal ($\Theta > 3.5^{\circ}$)
 - Assume 95% rejection
- BeamCal ($\Theta > 1.7^{\circ}$)
 - Assume 50% rejection

Dependence on momentum resolution

Over the momentum resolution globally
 → Increased significance → equivalent luminosity

Summary

- Excellent measurements of even rare Higgs decays possible at 3TeV CLIC
- Further improvements to rare decays possible by utilising the whole detector
- Measurements of SM Higgs decays serve as excellent tools for detector (and reconstruction) benchmarking

	$h \to b\overline{b}$	$h \to c \bar{c}$	$h \to \mu^+ \mu^-$
Signal efficiency	54.6 %	15.2 %	25 %
Stat. Uncertainty on $\sigma x BR$	0.22 %	3.24 %	23 %

The CLIC CDR

Take a look at CLIC CDR Volume 2 for details

https://edms.cern.ch/document/1160419

Signing is open and without obligation <u>https://indico.cern.ch/</u> <u>confRegistrationFormDisplay.py/display?</u> <u>confId=136364</u>

Supplementary Material

Muon identification

Momentum resolution

Light Higgs Decays - LCWS11

Electron theta -- background

Backgrounds at CLIC

- 19 TeV from
- 1.2 TeV in a 10ns readout window

