

INEAR COLLIDERS

Positrons sources & related activities for ILC/CLIC at LAL Orsay laboratory

Olivier Dadoun, dadoun@lal.in2p3.fr

Outline

- 1 Introduction
- $\bigcirc 2 \gamma$ production from Compton scheme
- 3 Hybrid source
- **④** Positron capture section
- **5** Conclusion

I. Chaikovska, R. Chiche, N. Delerue, D. Jehanno, F. Labaye, V. Soskov & F. Zomer R. Chehab, P. Lepercq, F. Poirier (until begin 2011), A. Variola & C. Xu

- Radiator : intense source of photons is needed
 - Polarized : undulator & laser-Compton
 - Unpolarized : amorphous & crystal
- Converter : material with a high Z (W)
- Capture section after the converter
 - Optical Matching Device to focus the e⁺
 - Pre-injector to accelerate the beam before injection to DR

- Radiator : intense source of photons is needed
 - Polarized : undulator & laser-Compton → CLIC baseline & ILC option
 - Unpolarized : amorphous & crystal
- Converter : material with a high Z (W)
- Capture section after the converter
 - Optical Matching Device to focus the e⁺
 - Pre-injector to accelerate the beam before injection to DR

- Radiator : intense source of photons is needed
 - Polarized : undulator & laser-Compton → CLIC baseline & ILC option
 - Unpolarized : amorphous & crystal → CLIC baseline & ILC under investigation
- Converter : material with a high Z (W)
- Capture section after the converter
 - Optical Matching Device to focus the e⁺
 - Pre-injector to accelerate the beam before injection to DR

- Radiator : intense source of photons is needed
 - Polarized : undulator & laser-Compton → CLIC baseline & ILC option
 - Unpolarized : amorphous & crystal → CLIC baseline & ILC under investigation
- Converter : material with a high Z (W)
- Capture section after the converter

e⁺ production principle based on Compton scheme

Data analysis, best results.

I. Chaikovska

	Electron pulse structure	Integrated flux over 0.2 ms	Integrated flux over 1 s (extrapolated)	
Best integrated flux	1 train	1265 γ	6.3E+06 γ	
	2 trains	1289 γ	6.4E+06 γ	
	3 trains	1428 γ	7.1E+06 γ	

In average, approximately 4 γ are produced per bunch crossing. As the repetition frequency of the collisions is about 1 MHz the flux of γ rays achieved so far is ~4×10⁶ γ/s

Hybrid scheme

- The conventional scheme using a thick amorphous target presents some difficulties due to high energy deposition
 - Heating → melting target
 - Energy deposition density → target breakdown Peak Energy Density Deposition, PEDD < 35 J/g (SLC)
- Decreasing the energy deposition
 - → Reduce the target thickness
 - → Limit the energy in the target
- One solution has been developed since some years using the association of a crystal and an amorphous targets : hybrid source
 - Use a thin crystal radiator to provide an important photon flux

- 1. Crystal W thickness few mm
- 2. Amorphous thickness several mm \star
- 3. Optical Matching Device \star
- 4. Pre-injector linac encapsulated in axial magnetic field \star

★ → study can be interesting for other positrons sources production
Use the hybrid scheme to present our studies.

1. Crystal W thickness few mm

Simulation the crystal behaviour inside Geant4 : G4Fot

Results: photon energies distributions

Benchmark: 5 GeV incident e- beam (t=1.4 mm) Photon energy distribution_____

- 1. Crystal W thickness few mm
- 2. Amorphous thickness several mm Granular amorphous target for power energy dissipation

Amorphous study

As already pointed out (see P. Pugnat, P. Sievers) [J. Phys. G. Nucl. Part. Phys. 29 (2003) 1797-1800]

A granular converter made of small spheres of few mm radius offers the advantages of presenting a relatively high [surface/volume] ratio which is interesting for the power dissipation.

	Thickness	Yield	PEDD	ΔE_{dep}	N-layers	spheres number	Effective density
Unity	mm	e+/e-	GeV/ cm ³ /e-	MeV/e-			g.cm ⁻³
Compact	8	13.3	2.18	523			19.3
Granular r=1mm	10.16	12.18	1.88	446	3	864	13.9
Granular r= 0.5mm	11.60	13.45	2.33	613	7	8064	13.9

Olivier Dadoun LCWS11

- 1. Crystal W thickness few mm
- 2. Amorphous thickness several mm
- 3. Optical Matching Device An accelerating field within the Adiabatic Matching Device (AMD)

AMD study

- 1. Crystal W thickness few mm
- 2. Amorphous thickness several mm
- 3. Optical Matching Device

4. Pre-injector linac encapsulated in axial magnetic field

Capture study

F. Poirier

- 2 GHz
- 84 accelerating cells constitute the TW tanks
 - Note: 84 cells + 2 half cells for couplers within ASTRA
 - $2\pi/3$ operating mode
- 4.36 m long
- 15 MV/m
- Up to 5 tanks are used to accelerate e+ up to 200 MeV

First optimisation done on 15 mm iris (radius aperture) tanks but final results with 20 mm iris tanks

Olivier Dadoun LCWS11

Typical cells dimension for the TW tanks

Capture study

- Acceleration: Phase of the first tank tuned for use of maximum accelerating gradient for the first tank 4 tanks are needed to reach ~200 MeV
- Deceleration: adapt the phase and gradient of the first tank to capture a maximum of positrons
 5 tanks are needed to reach ~200 MeV

Capture study

F. Poirier

Conclusion

- Man power and different LAL project
 - We finished the studies for CLIC and soon the study for the granular target.
 - We intend to maintain the effort on Mighty Laser and (in the limit of our possibilities) the activity on the hybrid target.
 - We expect additional man power to improve our participation in the fields related to linear collider.
- Thanks to our CERN colleagues : L. Rinolfi , P. Sievers, A. Vivoli