

Second generation DAQ for CALICE test beam

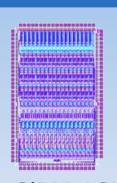
Vincent Boudry LLR, École polytechnique

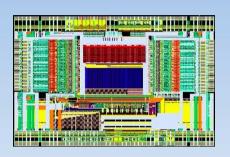
CALICE collaboration Physical prototypes

Prototypes

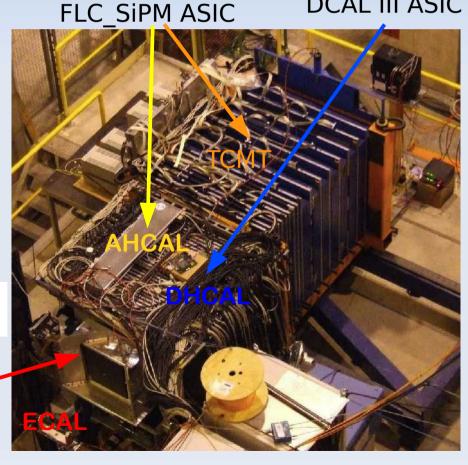
- ► Si-W ECAL, ScW ECAL (Scint+MPPC)
- ► AHCAL (Scint + SiPM/Fe)
- ▶ DHCAL (RPC + DCAL III / Fe)
- ► TCMT (Scint+SiPM or RPC+DCAL / Fe)

- Readout of FLC* analog pipeline
- External ADCs & Sequencing


DHCAL DAQ


Readout of DCAL digital pipeline.

▶ Dead time free triggered readout



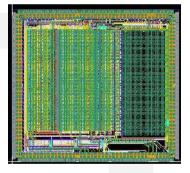
DCAL III ASIC

ROC family 2nd Generation ASICs

()mega

FE electronics adapted for the ILC:

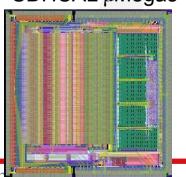
Add **auto-trigger**, analog storage, digitization and token-ring readout !!!


Include power pulsing : <1 % duty cycle

Address integration issues asap

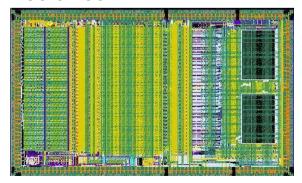
Optimize commonalities within CALICE (readout, DAQ...)

HARDROC2

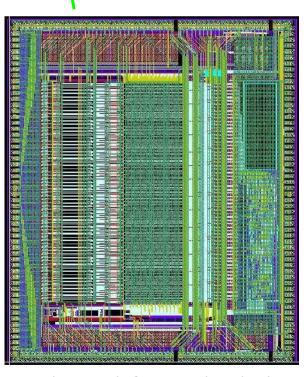

SDHCAL RPC 64 ch 16 mm²

FLC PHY3 (2003)

MICROROC SDHCAL μMegas



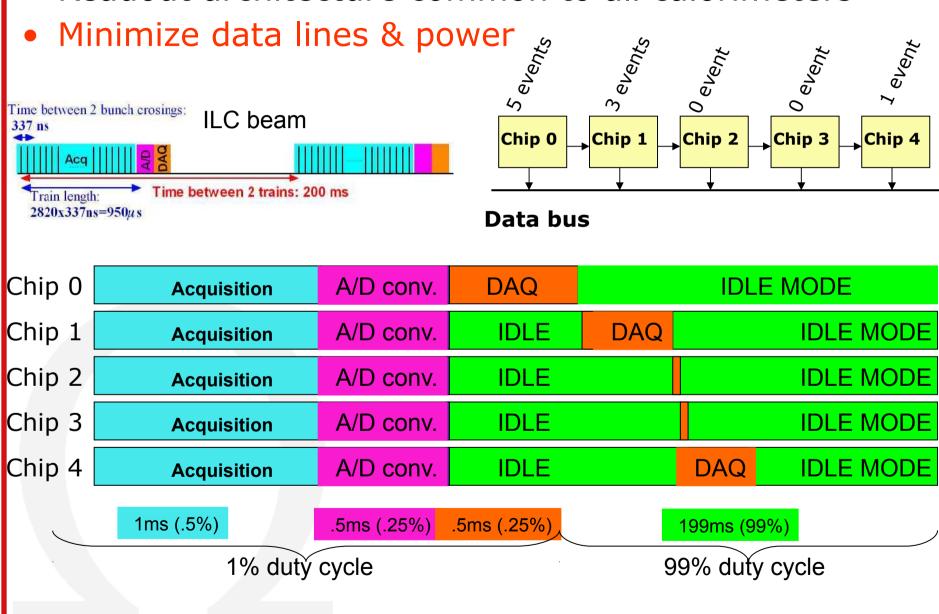
SKIROC2


ECAL Si 64 ch. 70 mm²

SPIROC2

AHCAL SIPM 36 ch 30 mm²

Technological prototypes



Adapted from Ch. de la Taille


Read out: token ring

Readout architecture common to all calorimeters

Slide from Ch. de la Taille

DAQ Task goal

Original ideas and R&D from CALICE-UK (UCL, Cambridge U., Manchester U., RHUL)

- "Generic" DAQ based AMAP on commercial boards
 - ► **Extensible** for Large Detectors + redundancy
 - ► **Flexible** → FPGA based : various acquisition modes (triggered, ILC-like)
- Provide the digital readout of CALICE embedded front end (*ROC chips) [1st gen was analogue]
 - ► All calorimeters seen through CALICE **standard** Detector **InterFace** board (**DIF**)
 - ◆ **Sends** configuration; fast commands; clocks; Triggers
 - Receives Data; Busy
 - ▶ 1 or 2 **Concentrator** cards level
 - ▶ **Distribution & collection** of the fast signal & sequencing
 - Advanced Off-Detector Receiver (FPGA based event builder)
 - ► All signals on 1 cables; add-hoc secure communication protocol
 - "low speed" 8b/10b coding
- 3 CALICE prototypes en route:
 - SDHCAL: ~400.000 ch; Digital (2b/ch → 2.5 with BC information & fmt)
 - ECAL: ~ 22.000 ch; Energy (12b → 32.2)
 - ► AHCAL: \sim 52.000 ch: Energy & time (2×12 b \rightarrow 32.3)

Test beam Acquisition modes

Single Event + Ext. Trig

- External trigger (from hodoscope or calibration system) = HOLD
 - Stop Acq, Hold analog data + sampling, Start Acq
- Noise & Beam condition safe (only 1 evt per trigger)

Single Event + auto-Trig

NOW USED IN DHCAL TB

- **External trigger** (hodoscope) → DIF
 - ◆ Stop Acq, ReadOut (last evt ~ triggered one), Start Acq
- Data sync (for Event building)
 - On synchronized BC ID → need for a SYNC @ MClk (100- 400 ns)
 - On trigger timestamp
 - ◆ BUT: for the AHCAL/Spiroc: the TDC signal needs a SYNC of the clocks ±1ns
- ► Rems: RAMfull from 1 ASIC → Reset of all detector

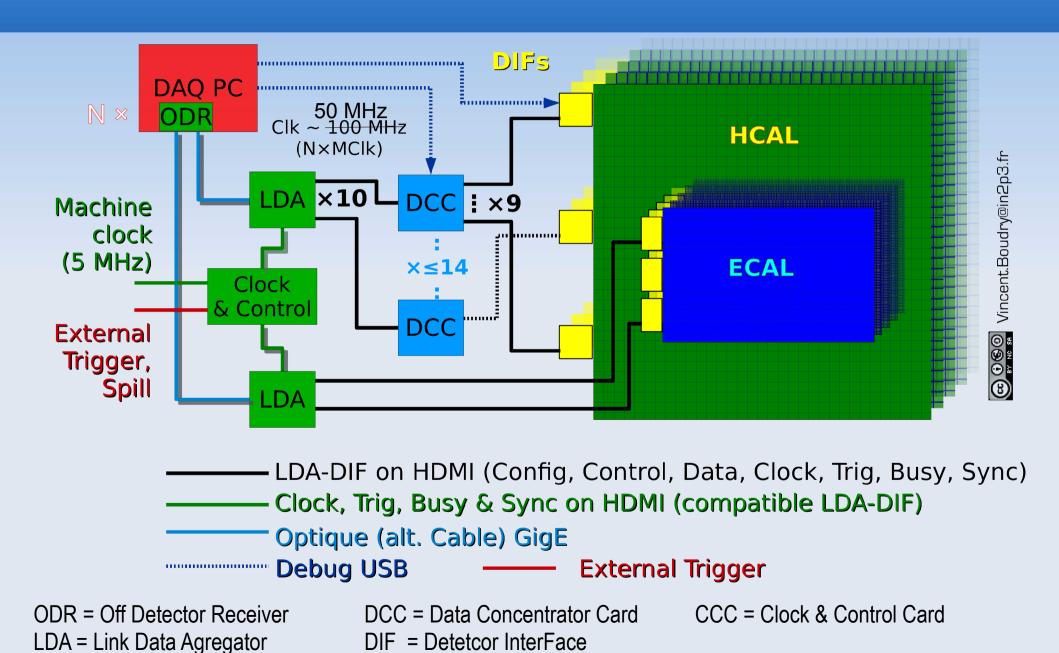
ILC like

- StartAcq on Start-of-Spill signal (-δt)
- ► StopAcq & Readout on End-Of-Spill or RAMfull or a Given # Beam Trigger

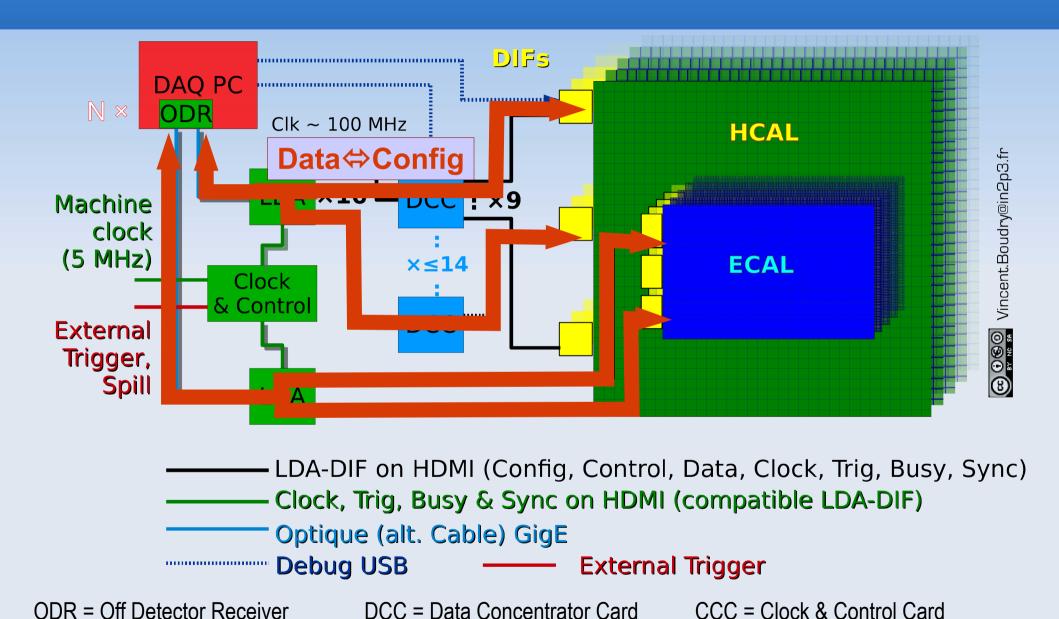
Three TB Running modes:

Physics

- as fast as possible IN SPILL,
- ▶ poissonian stat → As low as possible PILE-UP (or not!)
- Data with "low occupancy" (particle type & E dependant)

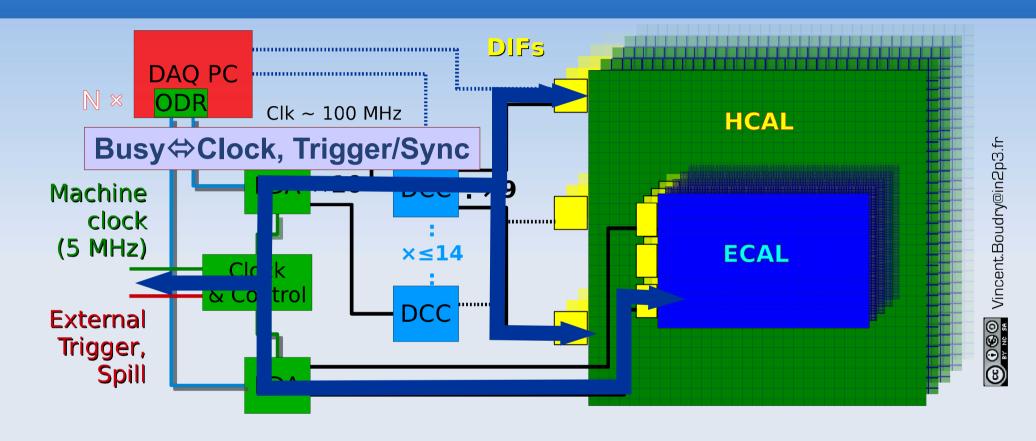

Demonstrator

- as close as possible from final ILC conditions
 - power pulsing, auto-trig
 - beam conditions close to ILC ? (Duty cycle, occupancy)


Calibration / noise

- ► *a priori*: off spill, fixed rate
- all cells ("maximum occupancy")

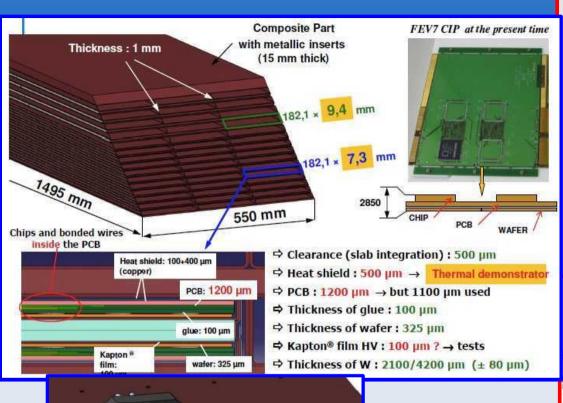
CALICE DAQ2 scheme

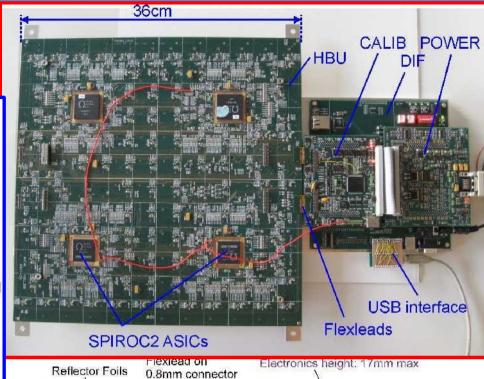


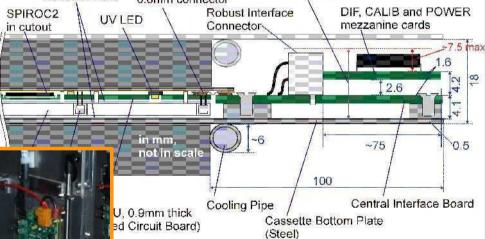
CALICE DAQ2 scheme

LDA = Link Data Agregator DIF = Detetcor InterFace

CALICE DAQ2 scheme

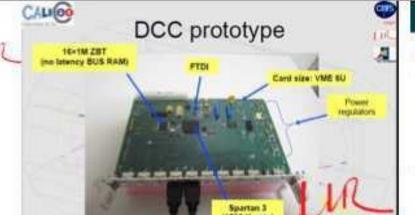

ODR = Off Detector Receiver LDA = Link Data Agregator


DCC = Data Concentrator Card


CCC = Clock & Control Card

DIF = Detetcor InterFace

Detector interfaces




AHCAL (DESY)

DHCAL (LAPP)

| Grenade, 29/09/2011

12/31

MANCHESTER | Non-House

LDA

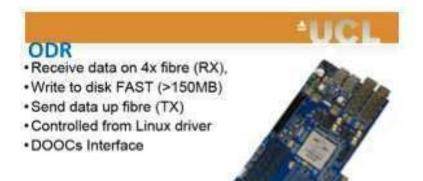
- . The LDA (from Enterpoint) consists of :
 - Mulldonoch2 baseboard:
 - add-on HDMI board to connect to 10 DIFs
 - an add-on ethernet board to connect to an ODR.
- · Firmware development :
 - DIF <=> LDA link running:
 - new code soon to be posted to svn;
 - same format as ODR in svn repository.

DCC and LDA are essentially similar to an ethernet switch but using a low level protocol

They both fan-out/in fast isochronous signals on a dedicated path and commands on the 8b/10b serial link

LDA has a fast link: Gb ethernet to the upper level = ODR, and can connect to 10 DIFs or DCC with the 8b/10b serial link

DCC can connect to 1 LDA and 9 DIFs using the 8b/10b serial link, data from DIF are buffered and sent to the LDA



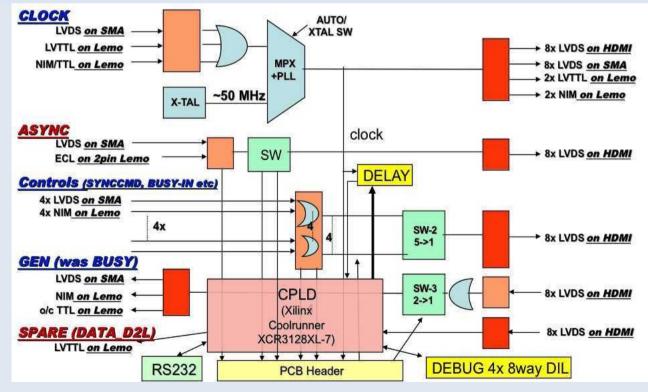
- Overall status unchanged for a while.
- Fans out clocks, fast commands and control signals.

UNINERSITY OF CAMBRIDGE

- . Fans in busy.
- Full complement of 10 boards with power. supplies tested.
- . One in LLR and one in LAPP.
- CCC link to LDA still needs to be done:
 - Board designed and firmware developed for
 - Soon to produce enough boards for all LDAs.

Documentation / repository

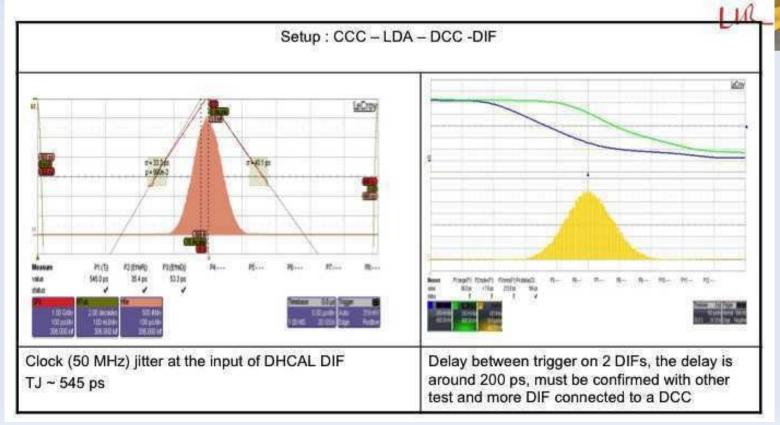
· All components should have extensive documentation on twiki : it is being updated and as components are basically done, can soon be finalised.


MANCHESER

- Twiki main :
- https://twiki.oern.ch/twiki/bin/view/CALICE/CALICEDAQ
- Also list of hardware availability /status started. https://twiki.cern.ch/twiki/bin/view/CALICE/HardwareList

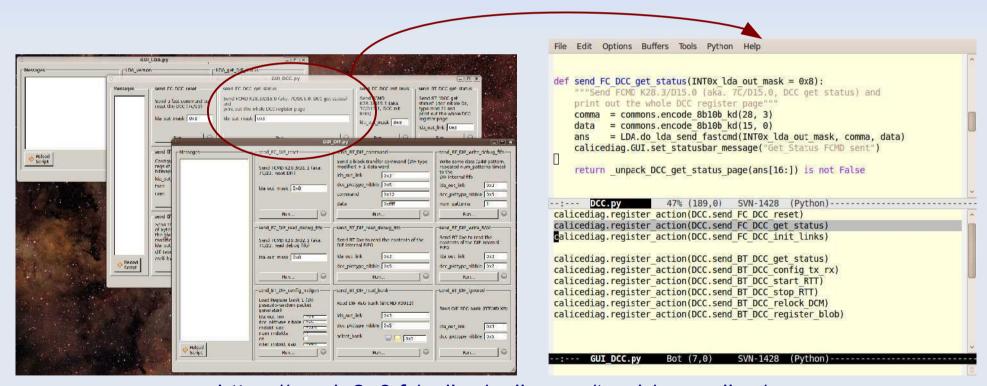
Clock and Control Card

- Developed at UCL (M. Warren, M. Postranecky)
- Distributes on 8 channels (HDMI, SMAs, NIM, ...) via dedicated circuitry for low jitter
 - ▶ Int | ext clock
 - Fast Signal (Trigger | Sync)
- Sums-up BUSY
- Performs Trigger logics
 - ► CPLD
- Performs sequencing
 - Reset of detector on ramfull
 - Readout order on Trigger
- At limit
 - new HW required



Clock & Trigger jitter

- Trigger & busy handling (G. Vouters)
 - ► Trig (NIM) → CCC → LDA → DCC → DIF BUSY ← CCC ← LDA ← DCC ←
- Trigger Jitter between DIFs (FG)



Jitter measurement

Python Test toolkit

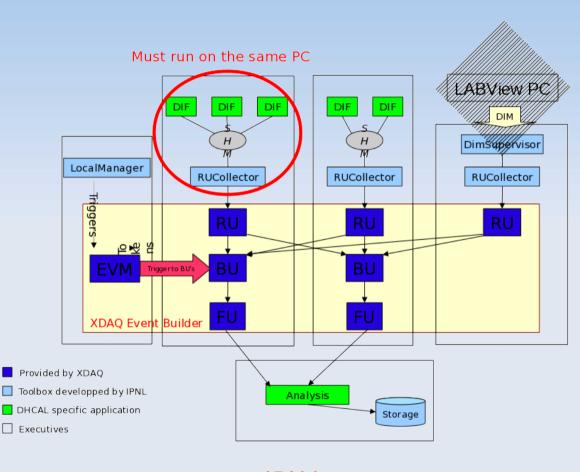
- Interactive hardware test software (GUI)
 - Each HW test easily scriptable: simple user-friendly python API: each function defined ← 1 graphical pane with "Run" button
 - Available to anyone working with USB/RS/Ethernet devices
- C libraries implementing the complete DIF Task force protocole → API

https://svn.in2p3.fr/calice/online-sw/trunk/pyserdiag/

Reliability tests

Stress tests using pseudo-random generator

- $9 \times DIF \rightarrow 1 \times DCC \rightarrow 1 \times LDA \rightarrow PC$
 - ▶ 9 DIFs (ECAL & SDHCAL) generate pseudo random data
- Results
 - ▶ Direction DIF → LDA ✓
 - Maximum DCC → LDA link occupancy (40Mbps) ✓
 - Many TB of data transferred no error (on table)

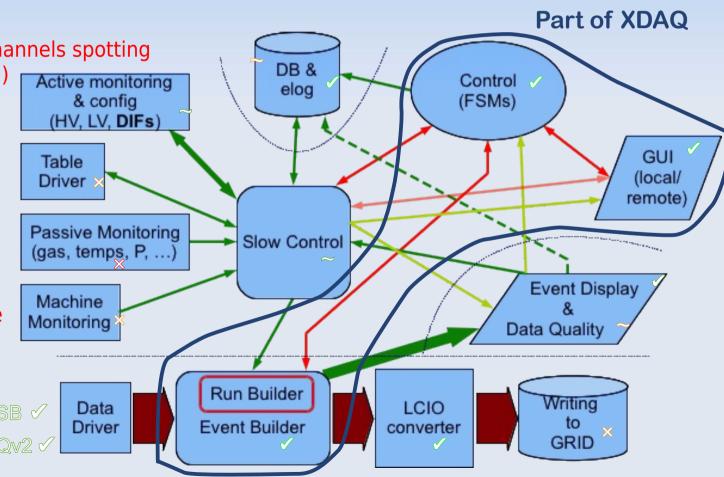

End-to-end test: FIFO write/read

- PC ↔ 1×LDA ↔ 1×DCC ↔ 1×DIF
 - ► Tests both fast-commands and block transfer "read" requests
- PC ↔ LDA Ethernet OK

ROC config loading & checking ✓

Software: XDAQ framework

- dev^{ts} started @IPNL for electronics test using XDAQ in 2008
- Ran for ≥ 1 year in TB, Cosmics & Electronics test
 - USB readout
 - Interface to old LabView program
- Recent development
 - Integration of DAQ2 readout chain
 - interface to a configuration DB
 - Writing of LCIO data in RAW format
 - versatile online analysis framework (root histos)
 - → Marlin Based
- For current TB: deployment on 4 PC tested;
 Performances to be improved

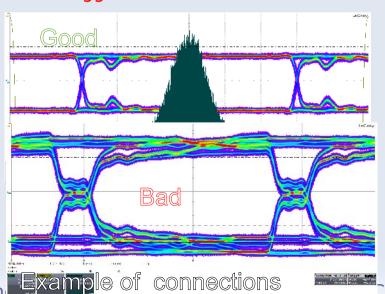

IPN Lyon

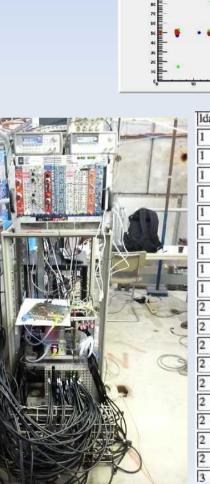
SW status

- XDAQ + C library to DAQ2
- All critical elements are ready
 - Configuration DB (being worked on)
 - DAQ2 interface

 Semi-automatic noisy channels spotting & correcting (monitoring)

- Clean Slow control
- interface to CondDB;
- event display
- Missing ancillaries
 - interface to the GRID
 - interface to the machine (⊃ in AIDA WP8.6.2)


First large scale test


- Last 2 weeks at PS
 - SDHCAL with 31 chambers (\sim 2/3 of full det).
 - 90 DIFs, 2 LDAs, 13 DCC, 1 CCC, 4 PCs
 - ~4400 ASIC / 285k channels individually configured
- Solved grounding problems, reset procedure, mis-functionnal elements, FW glitches, Data corruption

Readout ~100k triggers in test beam mode

(10 GB of data)

- ≥1 events per trigger
- trigger on scintillators

LICE Deam tests ("LCVV5 1")

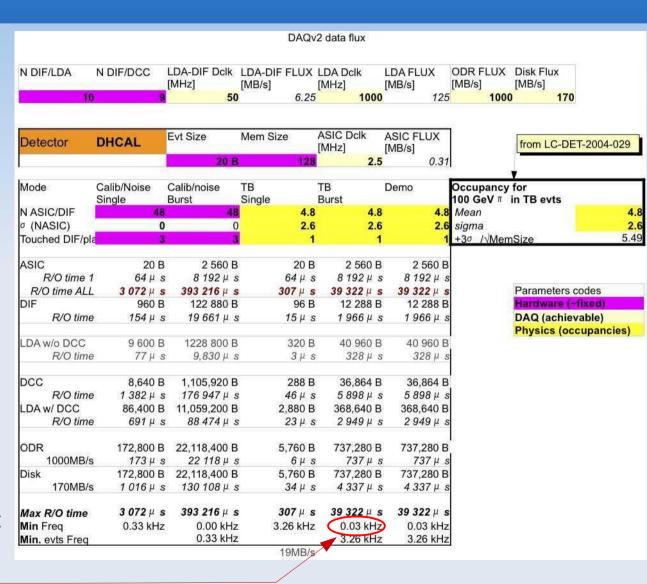
Entries Nean x Nean y PMS x
Hije But les Neon x
Ent les Neon x Neon y PMS x DMS y

lda	dec	cumulative data size	nb of shmwr	Failed	Corrupted
1	1	330200	357	0	0
1	2	256638	357	0	0
1	3	1891131	355	0	1
1	4	720476	357	0	0
1	5	662954	357	0	0
1	6	944784	357	0	0
1	7	691332	357	0	0
1	8	719920	355	0	1
1	9	1289548	355	0	1
2	1	0	0	0	0
2	2	0	0	0	0
2	3	0	0	0	0
2	4	1165448	357	0	0
2	5	802156	355	0	1
2	6	838746	357	0	0
2	7	1927652	357	0	0
2	8	2155632	357	0	0
2	9	1690838	355	0	1
3	1	1287528	355	0	i .

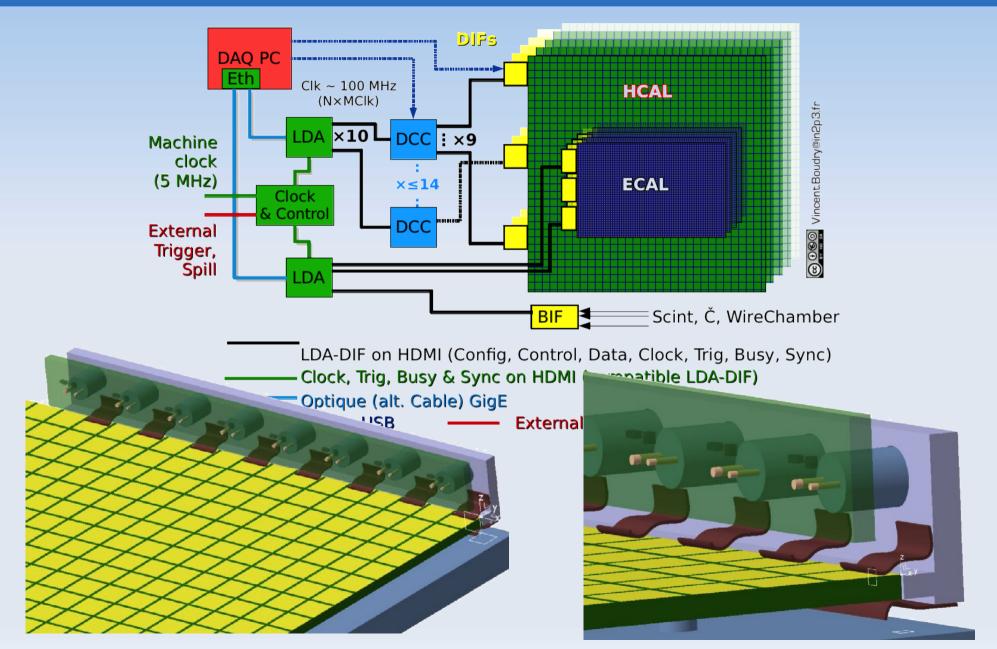
Grenade, 29/09/2011

20/31

Performances


 Rather low demands in term of bandwidth (but >> @ ILC for same vol.)

► SDHCAL : ~ 20MB/s in Spill


► ECAL: ~100MB/s

► AHCAL: ~ 300 MB/s

- Data limited by ASICs readout
 - Modes:
 - test beam single event
 - Test beam burst (≈ ILClike mode)
- Some code (System C) exists for simulation of full chain, being tested
- Successful full scale test done last week at PS with the SDHCAL
 - ▶ 5 Hz of data taking
 - Noisy detector (heat)

Beam InterFace card

Beam InterFace card

Basis:

- CALICE chips use auto-trigger
 - Readout can be triggered by single event using external trigger (e.g. beam hodoscope)
 - → "Single event" mode

History of Chip is usable (e.g. in case of selective ext. trigger)

- Readout triggered by environmental internal or extern trigger
 - Chip full
 - ILC-like mode (end-of-spill)
- Require some device to readout the beam line parameters
 - Scintillators; Cherenkov PM (coding of CEDAR bits)
 - ► Time of event (⊃ rec for wire chambers) within a 5 MHZ clock period

Implementation

- 2 solutions
 - ► Add-hoc card for interfaces with a CALICE ROC (SPIROC ?) + 1 DIF
 - Small adaption (buffers) card on a DIF + "simulation" of a digital ROC in the FPGA
 - Part of the coding can be "tricky"
- Both offer full compatibility with CALICE DIF for the DAQv2.
- To be implemented for 2nd version of CALICE beam test
- One of the task of AIDA (WP8.6.2)
 - ► For "standalone" CALICE tests
 - ► Functionnalities ⊃ in JRA1 TLU

Use of sub-ns TDC for CERN wire chambers until then?

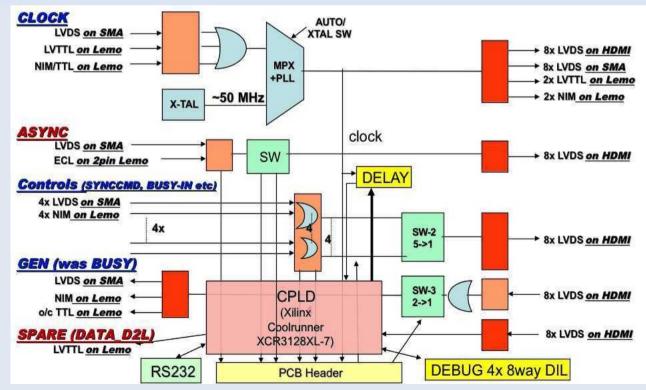
Summary & outlook

- Last months dedicated on bench studies & FW improvement
- CALICE DAQ2 has reach the **deployment phase** → **ready for large TB**
 - ► TB of SDHCAL with 400,000 channel next week with RPC (HardROC) & μMegas (MicroROC)
 - ► ECAL & AHCAL new electronics test bench
- HW ~ stabilized
 - ► Improvement of existing cards (LDA, CCC) foreseen
 - Beam InterFace card too be designed
- FW & SW in early functionnal version
 - Clean-up and part-rewriting needed
 - Improvement of diagnosis tools needed
 - Integration with environment (beam) to be done
- AIDA (co-running of CALICE & EUDAQ → common DAQ)
 - Specifications to be decided in next months

Big effort for CALICE!!

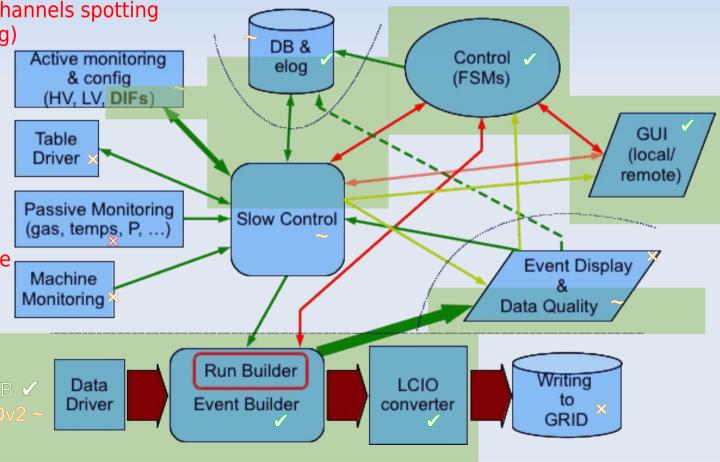
~15++ individuals from:

- UK: CAM, MAN, UCL, RHUL
- FR: LLR, LAPP, IPNL
- DF: DFSY

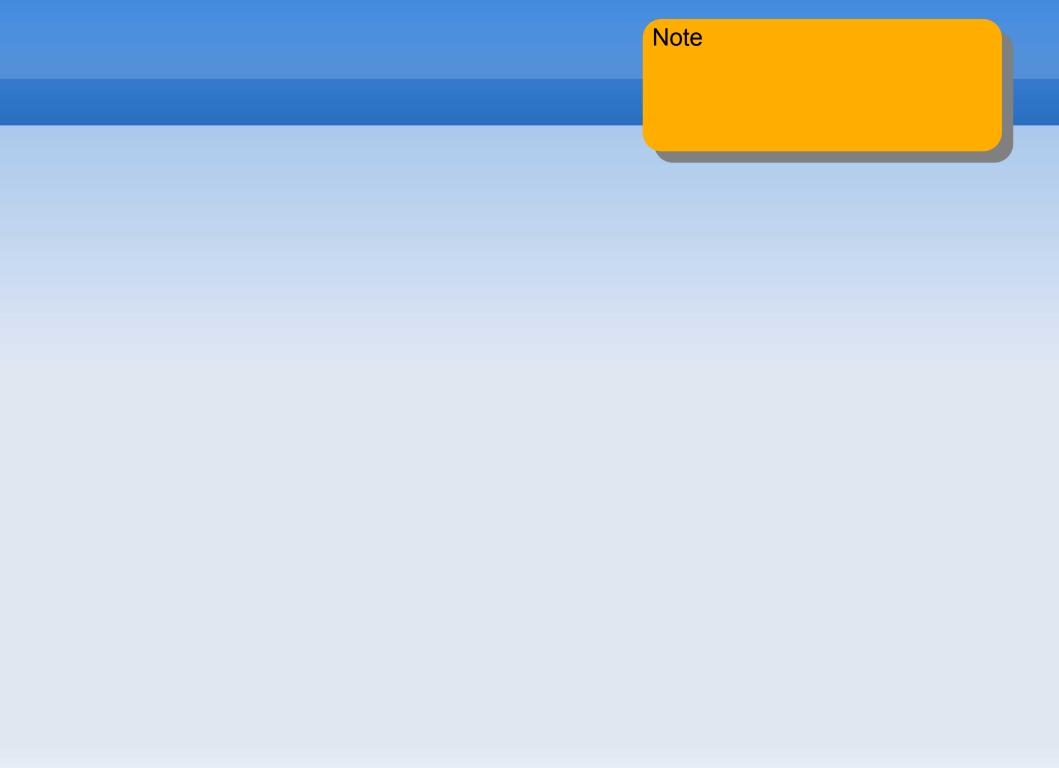


Back-up

Clock and Control Card


- Developed at UCL (M. Warren, M. Postranecky)
- Distributes on 8 channels (HDMI, SMAs, NIM, ...) via dedicated circuitry for low jitter
 - ▶ Int | ext clock
 - Fast Signal (Trigger | Sync)
- Sums-up BUSY
- Performs Trigger logics
 - ▶ CPLD
- Was used as DIF-Master (dev^t of LAPP)
 - Aka also sending hard-coded commands to DIF directly
 - Standalone tests with USB readout

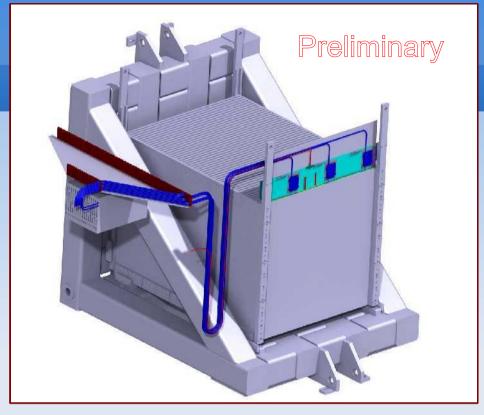
SW status


- Missing critical elements
 - Configuration DB (being worked on)
 - ► DAQ2 interface ↔ XDAQ being worked on
- Missing ancillaries
 - Semi-automatic noisy channels spotting & correcting (monitoring)
 - Clean Slow control
 - interface to CondDB;
 - event display : DRUID on LCIO file
 - interface to the GRID
 - ▶ interface to the machine (⊃ in AIDA WP8.6.2) Code exists in DAQv1

Implemented

CALICE DAQ

Back up


HW availability

Card	#Avail	#Tested	#OK	Remark All basic HW avail.
PC	6	6	6	OS needs upgrade
ODR	10	4	4	(commercial board: no expected default)
LDA	25	22	17	
HDMI Mezzanines	30	24	13	4 have faulty connectors and are being repaired. Not all cards have 10 conn. working
GEth mezzanines	25+5	25	20	2 can easily be recovered
CCC Adapter	25	17	16	Limits # of installations
CCC	10	10	10	term adaptation maybe be needed
DCC	2+20	22	21	1 faulty channel on 1 card; 1 burned to be repaired
ECAL DIF	29	29	29	equipement for 11 additional ones avail.
SDHCAL DIF	190	190	183	7 being refurbished; mods needed for HR2 (ok for HR2b)
AHCAL DIF	4*			*Being produced

Complete list of HW pieces & location available on https://twiki.cern.ch/twiki/bin/view/CALICE/HardwareList Vincent.Boudry@in2p3.fr 2G DAQ for the CALICE beam tests | LCWS'11 | Grenade, 29/09/2011 30/31

Cables

- CERN requires halogen free cables
 - "IS23 does apply to above-ground installations and experiments."
- On shelf: only for HiFi freaks (or Pigeons):
 - beautiful 100€ apiece 5m-long shielded HDMI cable
- 1 reasonable offer:
 - On demand PolyEthylene coating
 - \triangleright ~ 25€/cable (5m long, Ø 8.5mm) for 200+ cables.
 - pbm: 12 weeks delais
 - ► ~ enough funds on ANR to buy for the m³ SDHCAL (150 needed)
 - Urgent: 12 weeks delay due to boat shipping from China
 - Other demands being surveyed:
 - μMegas (~30 ?)
 - AHCAL (50) and ECAL (30)
 - + 10% spares (enough ?) → 260-275

Check F. Davin presentation