

Recent results of Micromegas SDHCAL with a new readout chip

M. Chefdeville CNRS/IN2P3/LAPP, Annecy, France Linear Collider Detector group LCWS, Granada, 26-30 Sep. 2011

2007-09	2010	2011
GASSIPLEX (HARDROC1)	HARDROC2	MICROROC
(DIRAC) $6 \times 16 \text{ cm}^2$	$32 \times 48 \text{ cm}^2$	$32 \times 48 \text{ cm}^2$
(8x32 cm²) Shaping 1.2 µs	Shaping 20 ns	Shaping 100-200 ns
97 % efficiency < 1.12 multiplicity	50 % efficiency < 1.06 multiplicity	98 % efficiency < 1.1 multiplicity
	$ \times 80 \\ 70 \\ 70 \\ 60 \\ 40 \\ 40 \\ 10 \\ 10 \\ 0 \\ 10 \\ 10 \\ 10$	× 80 70 60 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 50 40 50 50 50 50 50 50 50 50 50 5

New ASIC, Microroc

Chip threshold + channel offset

 \rightarrow virtually 1 threshold / channel

- LAL/Omega and LAPP collaboration
 - Same digital part as HARDROC2
- New analogue part
 - Spark protection inside silicon
 - Low noise charge preamplifier
 - 2 shapers of high/low gain with variable peaking time (30-200 ns) and dynamic range of 200 and 400 fC
 - Other features: pedestal alignment (offset) DAC, multiplexed analogue readout

transmit ON

New Active Sensor Unit

- Microroc status
 - 341 produced, 91.4 % yield
 - 13 ASU equipped, enough for 2 $\rm m^2$ prototypes
- New PCB routing

(minor modif. thanks to HR2/MR1 pin-to-pin compatibility)

- Improved EMC minimizes detector/digital signals X-talk
- Chip bypass correctly rooted
- Analog readout
- Temperature probe
- Improved PCB spark protection network
 - Faster
 - More compact

Improved m2 prototype design

- Gas tightness made by ASU, side frame and drift plate
 - \rightarrow Steel baseplate not necessary anymore
 - \rightarrow Baseplate screwed instead of glued
- Access to ASIC side of ASU
- Eventually: get rid of Fe baseplate
 - CLIC W-HCAL : less steel
 - ILC Fe-HCAL : improve absorber stiffness (+2mm)
- ASU mask thickness reduced from 3 to 2 mm
 - \rightarrow Thinned chamber (7 instead of 8 mm active thickness)
- \bullet Easier access to DIF connectors and LV & HV patch panel when chambers are inserted inside structures

Electronics test (I)

- Verify overall chip functionality
 - High gain shaper noise
 → minimum detection threshold
 - High and low gain shaper gains
 → adjust 3 thresholds
- Over 9216 channels
 - Noise: (0.16 +/- 0.02) fC
 - High gain: (7.1 +/- 0.2) DAC/fC
 - Low gain: (1.55 +/- 0.05) DAC/fC

Low channel threshold Uniform detector response

6

Electronics test (II)

- Determine working settings
 - Determine channel pedestal offset (4 bit DAC)
 - Set value of 3 chip thresholds
- For low threshold
 - Align pedestal for uniform noise rate
 → offset map
 - \rightarrow uniform detection threshold
- For medium and high thresholds
 - Make use of measured shaper gains

Control noise rate and threshold with pedestal offset DAC

- Clean Bulk from impurities by sparking
 - Increase HV until Paschen's limit is reached (800 V)
- Verify full detection chain and chip settings
 - Place ASU inside test chamber
 - Count $^{\rm 55}{\rm Fe}$ conversions in 1 cm drift gap
- Photopeak detection (~230 e-) at 260 V in Ar/CF_4 /iso 95/3/2!
 - \rightarrow Much better than with HR2 (390 V in Ar/iso 95/5)
 - \rightarrow promising for MIP charge detection (MPV of ~14 e-)

230 e- detected at a gas gain of 100!

8

M2 prototype assembly- June 2010

New tools to manipulate SLAB → Easier assembly procedure

July 2010 test beam

- After test at LAPP, good understanding of the detector
 - Noise level under control, successful RAMFULL runs
 - $\,$ $\,$ $^{55}\mbox{Fe}$ and cosmic signals seen
 - 3 thresholds under control
 - \rightarrow Ready for beam
- SPS/H4 3-22 August
 - 6 days standalone CALICE
 - 13 days multi-users RD51
 4 set-ups

- Measurements with muons (150 GeV/c)
 - Define working point of detector (voltage, shaping & threshold scans)
 - Measure efficiency, multiplicity, uniformity (2/3 of area)
 - Demonstrate RAMFULL operation in beam conditions
 - Measure multiplicity at various beam incidence angle
- Measurements with pions (150 GeV/c)
 - Landau distribution with analogue readout of low gain shaper
 - Shower signals with 3 thresholds
 - Validate spark protection by operation at (too) high gas gain

- Trigger: 3 scintillators, overlap area of 6x16 cm²
- Tracking
 - Pad telescope of LAPP (Gassiplex)
 3 chambers of 6x16 pads of 1 cm²
 3 mm drift gap
 - Strip telescope of NCSR Demokritos, NTUA (Gassiplex) (RD51 Micromegas telescope)
 6 chambers with 10 cm XY strips of 250 µm pitch
 → active area of 2.4x2.4 cm²
 7 mm drift gap
 - DAQ: VME ADC + Sequencer and CENTAURE DAQ
- 1 m2 prototype with 144 Microroc
 - DAQ: (interDIF + DIF + CCC) and LAPP LabView DAQ
 - New gas: Ar/CF₄/iso 95/3/2, so-called "T2K gas"
- Hardware Synchronization telescopes/prototype with busy handshake between VME sequencer and CCC

Setup (I)

Setup (II)

Starting-up

- Installation on 03/08 MD morning
- Noise measurement in the afternoon, pedestal and thresholds settings of Microroc chips, start flushing gas
- Muon beam 04/08 morning, first beam profile at 8 pm!

Noise conditions

- Very good noise conditions
 - Pedestal alignment w.r.t. low threshold such that average channel noise rate is 0.1 Hz
 - Less than 10 noisy channels over 9216 during whole test beam
 - Threshold of about 0.7 fC from pedestal width
- RAMFULL time = $127 \times 0.1 / 64 \sim 20 \text{ s} \rightarrow 0.05 \text{ Hz}$ low enough to see all beam particles (~200 Hz)!

Very preliminary results - Voltage scan

- Efficiency
 - Plateau reached for 4 shaping time
 - Detector signal is 115-150 ns
 - At 150 ns shaping
 - > 95 % at 365 V
 Gas gain is 1000 only!

- Multiplicity
 - Below 1.1 for efficiency larger than 95 %
 - Compatible with previous measurements

→ Standard settings 200 ns shaping, 0.7 fC threshold, V_{mesh} = 390V, Gain = 3000, V_{drift} = 480V efficiency = 98 %, multiplicity = 1.1, noise rate = 0.1 Hz/channel

Very preliminary results - threshold scan

- Minimum threshold ~ 0.7 fC
 efficiency > 98 %
 noise rate = 0.1 Hz/channel
- Increasing threshold to 2 fC, noise negligible, efficiency still > 98 %

- Muon Landau MPV
 - With 70 % efficiency, threshold = MPV = 20 fC
- Taking differential of eff(thr)
 - Yields ~ 22 fC

Very preliminary results - Analog RO

- Analog readout
 - . Hold of shaper signal (hold time can be varied)
 - . Conversion by ADC on DIF board
 - . Works with digital readout
- . Landau distribution measured on one pad
 - Narrow pion beam (1x3 cm²) was used
 - 3 thresholds set at ~0, 1 and 5 MIP respectively

3 distribution position agree with threshold settings → validate Microroc calibration

In DHCAL: Analog RO allows to fix and monitor the digital thresholds!

hadc dac0 4278

392

1324

131.

Very preliminary results - angle w.r.t. beam

Different angle of beam incidence (0°, 30°, 60°) (at 0° the beam direction is perpendicular to the m² prototype plane)

Expected increase of multiplicity with angle Remains reasonably small: at 60°, below 1.5

Very preliminary results - Showers (I)

- 150 GeV/c pion shower signals with semi-digital RO at 375 V (50000 triggers)
 - 20 cm iron block placed 50 cm upstream the prototype
 - Only air between block and prototype
 - Medium and high thresholds set at 1 and 5 MIP
- Nicely axially symmetric profiles
 - \rightarrow Uniform response of the detector
- Particle density decreases away from the shower axis
 - \rightarrow Narrower profile obtained from medium and high thresholds

Looks like semi-digital RO of shower signal in Micromegas works!

Very preliminary results - Showers (II)

- Nicely axially symmetric profiles
 - \rightarrow Uniform response of the detector
- Particle density decreases away from the shower axis
 - \rightarrow Narrower profile obtained from medium and high thresholds

Better seen by looking at ratio of number of hits from different thresholds, it increases towards the shower axis

Looks like semi-digital RO of shower signal in Micromegas works!

Very preliminary results - Showers (III)

- 3 runs at mesh voltage of 325, 350 and 375 V $\,$
 - MPV charge increases with gas gain
 - Adjust medium and high threshold at 1 and 5 MPV
- Up to 300 hits at 375 V (efficiency > 95 %) !
- Distribution of low threshold changes according to the detector efficiency
- Distributions of medium and high threshold however super-impose!

Thresholds can be set for any given mesh voltage

Conclusion on test beam

- From preliminary results, the Microroc m² prototype seems to be an excellent detector
 - Efficiency of 98 %, multiplicity of 1.1 at 0.7 fC threshold
 - Uniform response
 - Almost no noisy channel (8/9216)
 - Noise under control (RAMFULL runs)
 - Semi-digital RO works (thresholds set at will)
 - Shaping 200 ns \rightarrow signal of 1 µs \rightarrow Max rate of 1 MHz/cm²
 - Nearly no V_{mesh} trips. Very quiet detector
 At a gas gain of 3000 (390 V), there are very few sparks!
 To be further assessed inside W/Fe structures

Conclusion on project

- MICROMEGAS m²
 - Bulk process with embedded chips: ok
 - Mechanics : ok
 - Tests beam results
 - Electronic Readout: ok
 - Performances compatible with HCAL requirements
- Future
 - A second chamber is under construction
 - Two chambers should be inserted in the RPC-SDHCAL structure in October
 - Larger production run could be launched in 2012
 - Funding for studies of bulk-MICROMEGAS with resistive layer
 - Continue DAQv2 developments for CALICE

Aknowledegments

LAPP LC Detector group

Catherine Adloff Jan Blaha Jean-Jacques Blaising Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espargilière **Renaud Gaglione** Nicolas Geffroy Damien Girard Jean Jacquemier Yannis Karyotakis **Fabrice** Peltier Julie Prast Guillaume Vouters

Collaborators

David Attié Enrique Calvo Alamillo Khaled Belkadhi Vincent Boudry Paul Colas Christophe Combaret Rémi Cornat Paul Dauncey Franck Gastaldi Mary-Cruz Fouz Iglesias Wolfgang Klempt Lucie Linsen Rui de Oliveira Dieter Schlatter Nathalie Seguin Christophe de la Taille Stergios Tsigaridas

Wenxing Wang