Shower Leakage Correction in a High Granularity Calorimeter

Shaojun Lu

shaojun.lu@desy.de

LCWS11 Granada, 28th September 2011

ILD: International Large Detector

- In the ILD detector:
 - Heal inside coil
 - Hcal $\sim 5\lambda$
 - Ecal $\sim 1\lambda$
 - 80 GeV, 95% containment
- Topological reconstruction of leakage

CALICE Test Beam

AHCAL size ~1m³

materials Steel -Scintillator

layers 38

interaction length $4.3\lambda^{\pi}_{I}$

 $\sim 1 X_0 / layer \sim 0.1 \lambda^{\pi} I / layer$

channels 7608

cell size (cm²) 3x3 to 12x12

light yield ~13 pixel/MIP

S/N ~10

- CALICE collaboration is preparing/ performing large scale test beam
- A comprehensive set of data has been collected with the AHCAL
- Comparison with simulated data

Validation with e.m. Showers

The CALICE collaboration et al 2011 JINST 6 P04003 doi:10.1088/1748-0221/6/04/P04003

- Use positron data, without ECAL in front of AHCAL, to validate detector digitization and calibrations
- The calorimeter response to e.m. shower is linear to better than 3%.
- Energy density in hadron shower is smaller than e.m. shower
 - less sensitive to non-linearity of SiPM

Identification of Track Segments

- The high granularity of the calorimeter allows detailed 3D studies of the substructure of hadron showers
 - Minimum ionizing track segments can be identified
 - Detailed shower development information: shower starting point, energy fraction ...

Longitudinal Shower Profile

- Shower profile with/ without starting point alignment
 - Increased sensitivity
 with longitudinal shower
 profile from first nuclear
 interaction point,
 fluctuation ± 1Layer.

Heal: z = 0, first identified nuclear interaction point

Cross Check of Interaction Length

- Good agreement between simulation and data within uncertainty
- LHEP simulations a higher cross section than the other physics lists
 - results: lower interaction length compared to data

Longitudinal Shower Profile

- Agreement between MC and data within 5%
- The shower from Monte Carlo is shorter
- Validation of physics lists

Leakage Correction

- Select pure pion events with shower starting point in the AHCAL:
- Behave as MIPs in the ECAL (track)
 - reduce systematics from combining ECAL and AHCAL
 - no lateral leakage from ECAL.
- Study a correction to the leakage from the AHCAL, relying only on the precise reconstruction of the shower shape by the AHCAL.
- The punch through pions, that start showering in the TCMT (<1%), are not considered.
- Apply correction without using the beam energy information.

Leakage Correction

- Total energy measured using the full calorimeter
- Energy measured by SiW-ECAL+AHCAL
 - Clear energy leakage can be seen
 - High granularity may provide a power to correct leakage

Leakage:shower start and end-fraction

End-fraction = fraction energy in last 4 AHCAL layers

- Two observation:
 - Early shower start./low end-fraction → shower (almost) concluded
 → low leakage.
 - Late shower start./high End-fraction → shower not concluded
 → high leakage.

Creation of Lookup Tables

- Leakage correction factors from a multi-variable look-up tables
 - shower starting point, end-fraction and visible energy of sum SiW-ECAL and AHCAL
- Monte Carlo has been performed through 7.5 GeV to 100 GeV

Application on 80 GeV pion

- Apply the correction on 80 GeV pion, from both data and MC.
- The correction reduces significantly the impact of the leakage

Leakage Correction

Apply same lookup tables correction to MC and data

• Linearity of response recovered, improved the energy resolution.

Summary

- AHCAL Prototype Testing the Concept
 - Operation of a 8000 channels system
 - Calibration established
 - Systematics established
- AHCAL Prototype New Tool for Hadron Shower Physics
 - Developed method to identify the first hadron interaction
 - Developed method to estimate and correct longitudinal leakage
 - The correction method has been applied to simulation data and test beam data
 - The correction reduces significantly the impact of the leakage
- The tungsten HCAL data will come soon
 - W-AHCAL pions test beam start on November 2010
 - Allow new comparisons of simulation models with data

backup

Deviation

- Comparison of reconstructed energy in data and in MC
 - data larger below ~30GeV
 - data smaller when beam energy higher than 30GeV,
 - maximum different around ~60GeV after 30GeV

Detailed Shower Studies

 Monte Carlo has been performed through 7.5 GeV to 100 GeV

