Status of BlackHat

Linear Collider Meeting, Granada September 29, 2011 Zvi Bern, UCLA (on behalf of BlackHat)

BlackHat Collaboration current members:

ZB, L. Dixon, F. Febres Cordero, G. Diana, S. Hoeche, H. Ita, D. Kosower, D. Maitre, K. Ozeren

Outline

- Recent theoretical progress in performing NLO QCD computations.
- Will present W, Z + 3.4 jets at the LHC as examples.
- Comparison to data.
- Some new theoretical observations.
- Prospects for future: Many new NLO calculations are going to be completed in coming years.

Will be talking about processes at the LHC but obviously same theoretical advances apply to linear colliders.

Example: Susy Search

- Cascade from gluino to neutralino (escapes detector)
 - Signal: missing energy + 4 jets
 - SM background from Z + 4 jets, $Z \rightarrow$ neutrinos

Current state of art for Z + 4 jets: ALPGEN, based on LO tree amplitudes \rightarrow normalization still quite uncertain. Questions on shape.

To improve we want $pp \rightarrow Z + 4$ jets at NLO

Now done!

Why we do NLO

NLO does better, smallest theoretical uncertainty

Want similar studies at the LHC and Tevatron with extra jets.

State-of-the-Art NLO Calculations

In 1948 Schwinger computed anomalous magnetic moment of the electron.

60 years later typical example we can calculate via Feynman

diagrams:

$$pp \rightarrow W, Z + 2$$
 jets

Only two more legs than Schwinger!

For LHC physics we need also four or more final state objects

- Z+3,4 jets not yet done via Feynman diagrams.
- Widespread applications to LHC physics.

$$pp \to W, Z + 3, 4 \text{ jets}$$

Example of loop difficulty

Consider a tensor integral:

$$\int \frac{d^{4-2\epsilon}\ell}{(2\pi)^{4-\epsilon}} \, \frac{\ell^{\mu} \, \ell^{\nu} \, \ell^{\rho} \, \ell^{\lambda}}{\ell^{2} \, (\ell-k_{1})^{2} \, (\ell-k_{1}-k_{2})^{2} \, (\ell+k_{4})^{2}}$$

Note: this is trivial on modern computer. Non-trivial for larger numbers of external particles.

Evaluate this integral via Passarino-Veltman reduction. Result is ...

Result of performing the integration

Calculations explode for larger numbers of particles or loops. Clearly, there should be a better way!

Why are Feynman diagrams clumsy for high-loop or multiplicity processes?

 Vertices and propagators involve gauge-dependent off-shell states.
 Origin of the complexity.

- To get at root cause of the trouble we must rewrite perturbative quantum field theory.
 - All steps should be in terms of gauge invariant on-shell states. $p^2 = m^2$ On shell formalism.
 - Radical rewrite of gauge theory needed.

Amusing NLO Wish List

Run II Monte Carlo Workshop, April 2001

Single boson	Diboson	Triboson	Heavy flavour
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\bar{b} + \leq 3j$	$WW + b\bar{b} + \leq 3j$	$WWW + b\overline{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\bar{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma \gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z + b\bar{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$
$Z + c\bar{c} + \leq 3j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$tar{b} + \leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$
$\gamma + b\bar{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$		
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\bar{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\bar{b} + \leq 3j$		
	$WZ + c\bar{c} + \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3j$		

Just about every process of process of interest listed

The Les Houches Wish List (2005)

Les Houches 2005

process wanted at NLO $(V \in \{Z, W, \gamma\})$	background to
1. $pp o VV + jet$	$tar{t}H$, new physics
2. $pp o H+2$ jets	$oldsymbol{H}$ production by
	vector boson fusion (VBF)
3. $pp o tar{t}bar{b}$	$tar{t}H$
4. $pp o tar t+2$ jets	$tar{t}H$
5. $pp o VVbar{b}$	$VBF o H o VV$, $tar{t}H$, new physics
6. $pp ightarrow VV + 2$ jets	VBF o H o VV
7. $pp o V + 3$ jets	new physics
8. $pp o VVV$	SUSY trilepton

The Les Houches Wish List (2010)

2010

process wanted at NLO	background to		
1. $pp o VV+$ jet	$tar{t}H$, new physics		
2. $pp o H + 2$ jets	Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi H in VBF Campbell, Ellis, Zanderighi; Ciocolini, Donner Dittmaier		
3. $pp o t ar{t} b ar{b}$	Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier $t ar t H$ Bredenstein, Denner Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek		
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$ Bevilacqua, Czakon, Papadopoulos, Worek		
5 . $pp o VVbar{b}$	$VBF o H o VV$, $tar{t}H$, new physics		
6. $pp o VV + 2$ jets	$VBF o H o VV _{Melia, Melnikov, Rontsch, Zanderighi} $ $VBF: Bozzi, J\"{ager, Oleari, Zeppenfeld}$		
7. $pp o V + 3$ jets	new physics		
	Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi		
8. $pp o VVV$	SUSY trilepton		
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau		
9. $pp o bar{b}bar{b}$	Higgs, new physics GOLEM		

Feynman diagram methods

now joined by

unitarity based methods

On-shell Methods

Key idea: Rewrite quantum field theory so only gauge invariant onshell quantities appear in intermediate steps.

Loops amplitudes constructed from tree amplitudes.

Generalized unitarity as a practical tool:

Unitarity method

Bern, Dixon, Dunbar and Kosower (BDDK)

tree amplitude

Bern, Dixon and Kosower Britto, Cachazo and Feng, Ossola, Papadopoulos, Pittau; Giele, Kunszt and Melnikov Forde; Badger; Mastrolia

On-shell recursion

Britto, Cachazo, Feng and Witten (BCFW)

Further Reading

For an introduction to the basic concepts of on-shell methods I recommend:

Quantum Field Theory in a Nutshell, 2nd edition, by Tony Zee.

First textbook to contain modern formulation of scattering and commentary on new developments. Four new chapters compared to first edition.


```
2009: NLO W+3j [Rocket: Ellis, Melnikov & Zanderighi] [unitarity] 2009: NLO W+3j [BlackHat: Berger et al] [unitarity] 2009: NLO t\bar{t}b\bar{b} [Bredenstein et al] [traditional] 2009: NLO t\bar{t}b\bar{b} [HELAC-NLO: Bevilacqua et al] [unitarity] 2009: NLO q\bar{q}\to b\bar{b}b\bar{b} [Golem: Binoth et al] [traditional] 2010: NLO t\bar{t}jj [HELAC-NLO: Bevilacqua et al] [unitarity] 2010: NLO Z+3j [BlackHat: Berger et al] [unitarity]
```


2010: NLO W+4j [BlackHat: Berger et al, preliminary]

[unitarity]

BlackHat

Berger, ZB, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre New Members (not shown): Diana and Ozeren

BlackHat: C++ implementation of on-shell methods for one-loop amplitudes

Berger, ZB, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre

BlackHat is a C++ package for numerically computing one-loop matrix elements with 6 or more external particles.

- Input is on-shell tree-level amplitudes.
- Output is numerical on-shell one-loop amplitudes. g

On-shell methods used to achieve the speed and stability required for LHC phenomenology at NLO.

Other (semi) on-shell packages under construction

- **Helac-loop:** Bevilacqua, Czakon, Ossola, Papadopoulos, Pittau, Worek
- Rocket: Ellis, Giele, Kunszt, Melnikov, Zanderighi
- **SAMURAI:** Mastrolia, Ossola, Reiter, Tramontano
- MadLoop: Hirchi, Maltoni, Frixione, Frederix, Garzelli, Pittau

BlackHat + Sherpa

$$\sigma_n^{NLO} = \int_n \sigma_n^{tree} + \int_n \left(\sigma_n^{virt} + \Sigma_n^{sub} \right) + \int_{n+1} \left(\sigma_{n+1}^{real} - \sigma_{n+1}^{sub} \right)$$

BlackHat Sherpa

Sherpa integrates phase space.

Uses Catani-Seymour dipole formalism for IR singularities, automated in Amegic package.

Gleisberg and Krauss

First NLO calculation of W + 4 jets

Berger, ZB, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre [BlackHat collaboration]

W+4 jets $H_{\rm T}$ distribution

NLO QCD provides the *best* available theoretical predictions. Leptonic decays of *W* and *Z*'s give missing energy.

- On-shell methods really work!
- 2 legs beyond Feynman diagrams!

Z+4 Jets at NLO

Ita, ZB, Febres Cordero, Dixon, Kosower, Maitre

- Big improvement in scale stability
- Numerical reliability

First Useful NLO W+3 Jets Prediction

Berger, ZB, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre (BlackHat collaboration)
Phys. Rev. Lett. 102:222001, 2009

BlackHat +SHERPA

- Excellent agreement between NLO theory and experiment.
- Best available predictions

Comparison to LHC Data

- Fresh from ATLAS at the EPS conference.
- 3^{rd} jet p_T in W+jets [ATLAS-CONF-2011-060].
- Small scale variation at NLO, good agreement with data.
- Much more to come including four jets!

Ntuples give experiments the ability to use BlackHat results without needing to master the program.

Renormalization Scale Dependence

Renormalization and factorization scale dependence gets stronger as number of legs increases, but NLO tames it.

Shape Changes in W+4 jets

Some distributions can have sizable shape changes between LO and NLO

Importance of Sensible Scale Choices

BlackHat, arXiv:0902.2760

For Tevatron $\mu=E_T^W$ was a common renormalization scale choice.

For LHC this is a very poor choice. Does not set the correct scale for the jets.

- LO/NLO ratio goes haywire.
- NLO scale dependence is large at high ET.
- NLO cross-section becomes negative!

Energy of W boson does not represent typical jet energy

Better Scale Choices

What is happening? Consider two configurations

- If (a) dominates $\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$ is a fine choice
- But if (b) dominates then E_T^W too low a scale
- Looking at large E_T of $\mathbf{2}^{\mathrm{nd}}$ jets forces (b) to dominate
 - The total (partonic) transverse energy is a better variable; gets large properly for both (a) and (b)

$$\hat{H}_T = \sum_p E_T^p + E_T^e + E_T^\nu$$
BlackHat

• Other reasonable scales are possible.

Bauer and Lange; Melnikov and Zanderighi

Importance of Sensible Scale Choices

BlackHat, arXiv:0902.2760

A much better scale choice is the total partonic transverse energy $\mu = \hat{H}_T$

- · LO/NLO ratio sensible.
- NLO scale dependence very good.
- NLO cross sections positive.

Scale choice $\mu = E_T^W$ can cause trouble

New W Polarization Effect

ZB, Diana, Dixon, Febres Cordero, Forde, Gleisberg, Hoeche, Ita, Kosower, Maitre, Ozeren [BlackHat Collaboration] arXiv:0902.2760, 1103.5445

W-polarization fraction at large $p_{\mathrm{T,W}}$

- Both W^- and W^+ predominantly left-handed at high $p_{T,W}$
- Stable under QCD-corrections and number of jets!
- Not to be confused with well known longitudinal polarization effect.

Polarization Effects of W's

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{8} (1 \mp \cos\theta^*)^2 f_L + \frac{3}{8} (1 \pm \cos\theta^*)^2 f_R + \frac{3}{4} \sin^2\theta^* f_0$$

right-handed gluon

mostly right handed but 1/4 the weight.

Effect is non-trivial, depending on a unobvious property of the matrix elements.

Up to 80 percent left-handed polarization. Polarization remains as number jets increases.

The shapes are due to a preference for both W bosons to be left handed at high transverse energies.

Measurement by CMS

	CMS	NLO	ME+PS
$W^+ (f_L - f_R)$	$0.300 \pm 0.031 \pm 0.034$	0.308	0.283
$W^- (f_L - f_R)$	$0.226 \pm 0.031 \pm 0.050$	0.248	0.222
$W^+ f_0$	$0.192 \pm 0.075 \pm 0.089$	0.200	0.187
$W^- f_0$	$0.162 \pm 0.078 \pm 0.136$	0.193	0.179

Recent CMS measurement agrees perfectly with theoretical prediction!

W polarization may be usable to separate out prompt W's from ones from top (or perhaps new physics). Under study by CMS.

Jet production ratios in Z + n jets

Ellis, Kleiss, Stirling; Berends, Giele, Kuijf, Kliess, Stirling; Berends, Giele, Kuijf, Tausk

Also called 'Berends' or 'staircase' ratio.

jet ratio	CDF	LO	NLO
2/1	0.099 ± 0.012	$0.093^{+0.015}_{-0.012}$	$0.093^{+0.004}_{-0.006}$
3/2	0.086 ± 0.021	$0.057^{+0.008}_{-0.006}$	$0.065^{+0.008}_{-0.007}$
4/3	_	$0.040^{+0.005}_{-0.004}$	

- Ratios should mitigate dependence on e.g.: jet energy scales, pdfs, nonperturbative effects, etc
- Strong dependence on kinematics and cuts.
- Note: Lore that n/(n+1) jet ratio independent of n is not really right, depends on cuts.

Z+1, 2, 3 jets with CDF setup

Differential ratios in p_{T,Z}

Summary

- On-shell formulation of quantum field theory leads to powerful new ways to compute quantities extremely difficult to obtain via Feynman diagrams.
- Huge advance in NLO QCD. For multijet process these are currently the best available theoretical predictions.
- Many new processes, W,Z + 3,4 jets and many more on their way.
- Discovery of W polarization effect. Separate out W's from top decay or perhaps new physics. Recent measurement by CMS.
- BlackHat stands ready to help experimental groups with their studies. Ntuples effectively allow experimenters to compare NLO theory and experiment.