# Beam Dynamics with Account of Environment Effects in Future e+e- Colliders : New Results

B.B. Levchenko

Institute of Nuclear Physics, Moscow State University

levtchen@mail.desy.de

# I. Real Fields in Free space

## Field of a Circular Cylinder

The field produced rapidly moving single charge

$$\vec{E} \,=\, \kappa \frac{q\,\gamma}{r^2} \Big[ \frac{1-\beta^2}{1-\beta^2 \sin^2\theta} \Big]^{3/2} \, \frac{\vec{\mathbf{r}}}{r} \label{eq:energy}$$

The radial electric field of a bunch shaped as a circular cylinder of length L with a uniform charge density  $\rho$ 

$$E_{\perp}(r,\xi,z) = \kappa \rho \gamma \{ z I_1 + (L-z) I_2 \}$$

with

$$I_{1} = \int \int \frac{(r - \sigma \cos(\xi - \phi)) \sigma d\sigma d\phi}{(r^{2} + \sigma^{2} - 2r\sigma \cos(\xi - \phi)) \sqrt{\gamma^{2}z^{2} + r^{2} + \sigma^{2} - 2r\sigma \cos(\xi - \phi)}}$$

$$I_{2} = \int \int \frac{(r - \sigma \cos(\xi - \phi)) \sigma d\sigma d\phi}{(r^{2} + \sigma^{2} - 2r\sigma \cos(\xi - \phi)) \sqrt{\gamma^{2}(L - z)^{2} + r^{2} + \sigma^{2} - 2r\sigma \cos(\xi - \phi)}}$$

 $\blacktriangleright$  In ultra-relativistic limit,  $\gamma >> 1$ , simplified to (Fig. A)

$$E_{\perp}(r,z) \, = \, \kappa \frac{qN\gamma}{Lr} \Big\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \Big( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \Big) \, + \, \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \Big( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \Big) \Big\} \, \not \gg \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \right) \right\} \not \gg \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \right) \right\} \not \gg \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \right) \right\} \not \sim \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \right) \right\} \not \sim \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{L-z}{\sqrt{r^2 + \gamma^2 (L-z)^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_2^2 \right) \right\} \not \sim \, \frac{1}{2} \left\{ \frac{z}{\sqrt{r^2 + \gamma^2 z^2}} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) \right\} \not \sim \, \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1}{2} \left( 1 + \frac{3}{8} \frac{b^2}{r^2} C_1^2 \right) + \frac{1$$

with

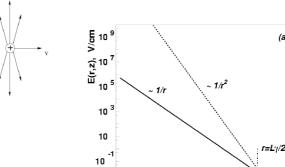
$$C_1 = \left[1 + \frac{\gamma^2 z^2}{r^2}\right]^{-1}$$
  $C_2 = \left[1 + \gamma^2 (L - z)^2 / r^2\right]^{-1}$ 

In a very narrow transition region beyond the bunch tail, the field strength decreases rapidly (Fig. B)

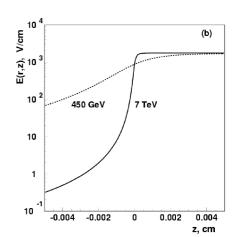
$$E_{\perp}(r,z) \approx \kappa \frac{\lambda}{r} \left( 1 - \frac{r^2}{2\gamma^2 (L-z)^2} \right)$$

The space-time distribution of E field is well approximated by a step-like function

$$E_{cir}(r, z, t) = \kappa \frac{2\lambda}{r} \Big[ \theta(z - \beta ct) - \theta(z - \beta ct - L) \Big]$$



A. The transverse profile of E field generated by a bunch. The 1/r² behavior is restored only at the distance of several kilometers. Parameters of the bunch corresponds to the LHC proton beam.



B. The radial field variations with z near the bunch tail at fixed r=1 cm. Parameters corresponds to the LHC proton beam.

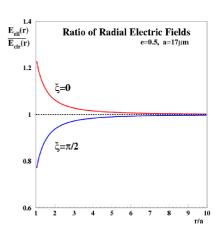
#### Field of an Elliptical Cylinder

With the same reasoning as above, the radial electric field produced by a rapidly moving elliptic bunch of length L, the eccentricity e and the semi-axis a

$$E_{ell}(r, z, t) = \kappa \frac{2\lambda}{r} \left( 1 + \frac{a^2 e^2}{r^2} \cos 2\xi \right) \left[ \theta(z - \beta ct) - \theta(z - \beta ct - L) \right]$$

The azimutal field variation is essential only at  $r \sim a$ . For lager r, the angular dependence vanish rapidly (Fig. C)

$$\frac{E_{ell}(r, z, t)}{E_{cir}(r, z, t)} = 1 + \frac{a^2 e^2}{r^2} \cos 2\xi$$



C. The ratio of radial electric fields produced by an elliptic bunch and a circular bunch of length L.

#### **Theorem**

 $\blacktriangleright$  In the ultra-relativistic limit,  $\gamma \rightarrow \infty$ , the external fields of a bunch with a linear charge density  $\lambda(z)$  governed by the law

$$E(r, z, t) = \frac{2\kappa}{r} \lambda(z - \beta ct)$$
  $B_{\phi} = -\frac{\beta}{c} E(r, z, t)$ 

$$B_{\phi} = -\frac{\beta}{c}E(r,z,t)$$



# II. Image Fields Generated by a Bunch **Between Perfectly Conducting Plates**

# Fields from Image Charges: Exact Solution



A relativistic bunch moves between infinitely wide parallel perfectly conducting plates.

**◆**Unsolved classical problem: Precisely summarize fields of an infinite series of mirrored image charges, displaced from the symmetry plane

$$E_{\perp,image}(x,\bar{x}) \, = \, 2\kappa\lambda \cdot \sum_{k}^{\infty} \left(\frac{1}{2kh-x_{1}} - \frac{1}{2kh+x_{1}}\right) - \sum_{m}^{\infty} \left(\frac{1}{2mh-x_{2}} - \frac{1}{2mh+x_{2}}\right)$$

The exact solution is provided by the electric field structure function  $\Lambda$  depending only on normalized variables  $\delta = x/h$ ,  $\delta = x/h$ 

$$\Lambda(\delta, \bar{\delta}) = \frac{1}{2} \left[ \frac{\pi}{2} \cdot \frac{\cos(\frac{\pi}{2}\bar{\delta})}{\sin(\frac{\pi}{2}\delta) - \sin(\frac{\pi}{2}\bar{\delta})} - \frac{1}{\delta - \bar{\delta}} \right]$$

The image field must be added to the direct field of the bunch to meet the boundary conditions

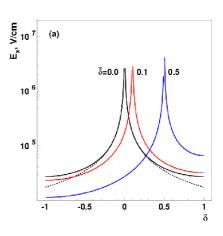
$$E_{\perp,tot}(x,\bar{x}) = E_{\perp,dir} + E_{\perp,image} = \frac{\pi\kappa\lambda}{h} \cdot \frac{\cos(\frac{\pi}{2}\bar{\delta})}{\sin(\frac{\pi}{2}\delta) - \sin(\frac{\pi}{2}\delta)}$$

With an increase of  $\delta$ , the field gradient across the bunch significantly increases

$$\partial E/\partial x \sim 1/\cos^2(\pi\delta/2)$$

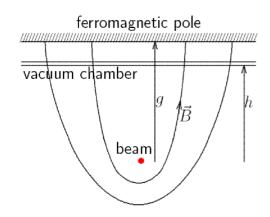
At opposite ends of the bunch diameter the difference  $\Delta E(\delta)$ 

$$\Delta E(0.1) = 4360 \text{ V/cm}, \ \Delta E(0.5) = 27300 \text{ V/cm}$$



Electric field distribution between parallel conducting plates for a number of bunch offset values.

#### **Magnetic Images**



The ferromagnetic boundaries are represented by a pair of infinitely wide parallel surfaces at x=±g. The DC field penetrates the vacuum camber, the AC fields do not penetrate.

Magnetic images can be treated in much the same way.

**▶** The magnetic field structure function is

$$H(\eta, \bar{\eta}) = \frac{1}{2} \left[ \frac{1}{\eta - \bar{\eta}} - \frac{\pi}{2} \cdot \frac{\cos(\frac{\pi}{2}\eta)}{\sin(\frac{\pi}{2}\eta) - \sin(\frac{\pi}{2}\bar{\eta})} \right]$$

We distinguish between the DC and AC image field

$$B_{y,image,DC}(x,\bar{x}) = \frac{4\kappa\lambda\beta}{cg} \cdot \mathcal{B} \cdot H(\eta,\bar{\eta})$$

$$B_{y,image,AC}(x,\bar{x}) = -\frac{4\kappa\lambda\beta}{ch} \cdot (1-\mathcal{B}) \cdot \Lambda(\delta,\bar{\delta})$$

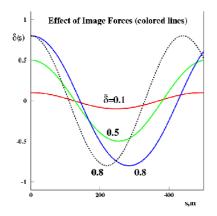
To satisfy the boundary conditions, the image fields must be added to the direct field

$$B_{y,tot}(x,\bar{x}) = B_y + B_{y,image,DC} + B_{y,image,AC}$$

$$= -\frac{\pi\kappa\lambda\beta}{ch} \left\{ \frac{(1-\mathcal{B})\cos(\frac{\pi}{2}\bar{\delta})}{\sin(\frac{\pi}{2}\delta) - \sin(\frac{\pi}{2}\bar{\delta})} + \frac{h}{g} \cdot \frac{\mathcal{B}\cos(\frac{\pi}{2}\eta)}{\sin(\frac{\pi}{2}\eta) - \sin(\frac{\pi}{2}\bar{\eta})} \right\}$$

## III. Applications

#### **Coherent Motion and the Tune Shift**



The coherent oscillation of the bunch under influence of the linear focusing and image forces (colored solid lines) Direct space-charge fields, as well as fields due to image charges and currents shift the betatron frequencies.

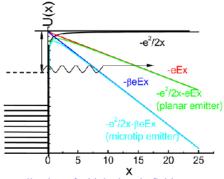
>> The coherent tune shift

$$\Delta\nu_x^{(coh)} = -\frac{2r_p RJ\langle\beta\rangle}{q\beta c\gamma} \left[ \left(\frac{1}{B\beta^2\gamma^2} + 1\right) \frac{\xi_1(\bar{\delta}_0)}{h^2} + \frac{\xi_2(\bar{\eta}_0)}{q^2} \right]$$

The incoherent tune shift for the x-motion

$$\Delta\nu_x^{(inc)} = -\frac{2r_pRJ\langle\beta\rangle}{q\beta c\gamma} \left[ \frac{1}{B\beta^2\gamma^2} \left( \frac{1}{2a^2} + \frac{\epsilon_1(\bar{\delta})}{h^2} \right) + \left( \frac{\epsilon_1(\bar{\delta})}{h^2} + \frac{\epsilon_2(\bar{\delta})}{g^2} \right) \right] \quad *$$

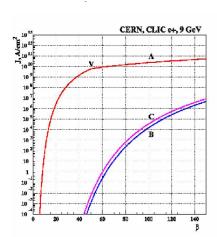
#### Field Emission in CLIC Initiated by a Bunch

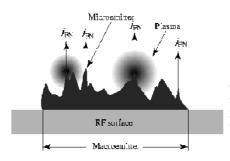


Application of a high electric field to a conductor produces a triangular shaped potential energy barrier through which electrons may tunnel. In addition to known electron sources, electron field emission intensified by multipacting can make a dominat contribution to the build-up of the electron cloud in a beam transport system.

In the Fowler-Nordheim theory with an accounting of the image force, the current density of field emission of electrons (FEC) is

$$J_{\scriptscriptstyle FN}(F) \, = \, A \frac{F^2}{\varphi \cdot t^2(y)} \exp \Big\{ - B \frac{\varphi^{3/2}}{F} \theta(y) \Big\} \label{eq:JFN}$$





Origin of the anomalous high FEC. The surface quality is characterized by the field enhancement factor  $\beta FN$ . The local field strength F= $\beta FNE$ 

Densities of the electron current as a function of the field enhancement factor. Electrons are extracted by the bunch field from the copper irises in the CLIC RF structures at T=300 K. A) RF field +beam field; B) Only beam field; C) Main linac, inside a quadrupole beam pipe with the inner radius 2.35 mm. The kink V shows the value of surface field at which electrons escape the surface freely (the potential barrier vanishes).

Only at  $\beta_{FN}$  below 7, the electron emission is negligible. However, the emission current at  $\beta_{FN}$ =20 increases by 10 order of magnitude! The tunneling time Tt from the iris surface is of 2.5E-14 s and should be compared with time Tb the bunch travels the distance of own length at the velocity of light, Tb = 3.7E-13 s. There is enough time to extract electrons and accelerate them in the field of a single bunch.

### IV. Summary

- We derive new expressions for electric and magnetic self-fileds produced by a relativistic bunch shaped as circular or elliptical cylinder with uniform charge density. In the ultra-relativistic limit, the radial electric field to a good accuracy is independent of the bunch shape at r>10a.
- We solved the classical problem of summing image fields generated by a relativistic bunch of charged particles moving with offset between infinitely wide parallel perfectly conducting plates.
- $\blacktriangleright$  The exact solutions are represented by the structure function  $\Lambda(\delta, \delta)$  of electric images and the structure function  $H(\eta, \dot{\eta})$  of magnetic images, depending only on the normalized variables.