Preliminary tuning studies for CLIC-BDS L*=6m.

Eduardo Marin

LCWS11, Granada, Spain 27 September, 2011

Acknowledgments to G.Zamudio, B.Dalena, A.Latina and R.Tomas

Motivations and starting points


- Motivation
- Comparison between designs

2 Tuning Algorithms

- Blind Tuning
- BBA Tuning

3 Tuning results

- CLIC-BDS L*=3.5m
- CLIC-BDS L*=6m

Motivation Comparison between designs

Why $L^*=6m$?

- Lengthening L^* to 6 meters allows to locate QD0 outside the detector.
 - More simple, robust and stable solution.
 - No interference detector-QD0.

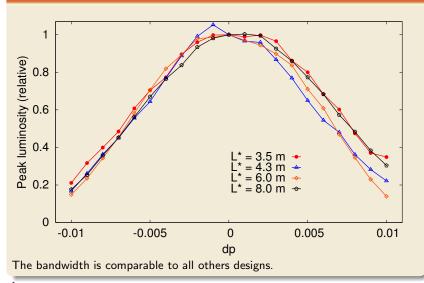
Why not a $L^*=6m$?

- A luminosity loss is unavoidable
- Synchrotron radiation rises up

Aotivation Comparison between designs

Luminosity

L*	Total Luminosity	Peak Luminosity
[m]	$[10^{34} cm^{-2} s^{-1}]$	$[10^{34} cm^{-2} s^{-1}]$
3.5	6.9	2.5
4.3	6.4	2.4
6.0	5.0	2.1
8.0	4.0	1.7


 $L_{total} \approx 17\%$ lower than required. $L_{peak} \approx 7\%$ higher than required.

Beam size at the IP

- $\sigma_x^* = 49$ nm ($\approx 22\%$ higher than required)
- $\sigma_x^* = 1.06$ nm ($\approx 5\%$ higher than required)

Motivation Comparison between designs

Bandwidth

¹Plot produced by G.Zamudio

CLIC-BDS L*=6m

- Transverse misalignment to all BDS components.
- Using quadrupoles and sextupoles as tuning variables.

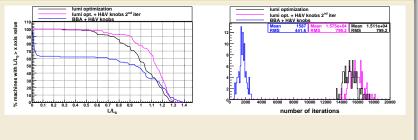
Pre-alignment	Iterations	Success ratio [%]	
[µm]	$[10^3]$	$80\% L_0$	80%L _{0req.}
5	10	68	75
6	11	91	91
7	12	90	93
8	11	81	92

- 10000 iterations can be afforded by a time luminosity measurement <1s.
- A pre-alignment of 8 μ m it is challenging to reach.
- The tuning performance is not the appropriate.

Strategy

- Step 1: to apply 1to1 steering for both x and y plane.
- Step 2: to apply DFS steering for both x and y plane.
- Step 3: to scan sextupole tuning knobs

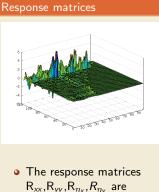
Algorithm features


- Each step is characterise by an optimum parameter, which applies the appropriate correction gain.
- A parameter optimisation study needs to be done for each lattice.
- All these steps are iterated until the luminosity convergence is reached.

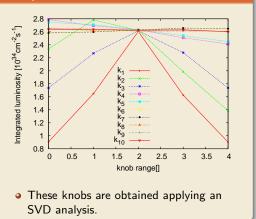
Initial conditions

- Synchrotron radiation is activated.
- All BDS components (except bendings) are randomly misaligned by σ =10 $\mu{\rm m}.$
- The study is formed by 100 machines.
- Both electron and positron machines are identically misaligned.

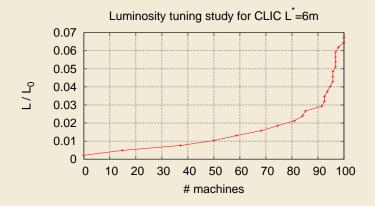
CLIC-BDS L*=3.5n CLIC-BDS L*=6m


CLIC-BDS L*=3.5m

0


Tun.Algorithm	L/L_0 for 90% machines	Iterations
	[%]	[10 ³]
Simplex	86	17
Simplex + Knobs	93	18
BBA+Knobs	55	1.8

CLIC-BDS L*=3.5n CLIC-BDS L*=6m


 $R_{xx}, R_{yy}, R_{\eta_x}, R_{\eta_y}$ are evaluated to apply 1to1 and DFS steering.

Sextupole Knobs

CLIC-BDS L*=3.5m CLIC-BDS L*=6m

Preliminary results after 1 iteration

- The optimum parameters used in the L*=3.5m tuning, have been implemented.
- 50% of the machines reach $1\%L_0$ after the first iteration.

Conclusions

- The blind algorithm could be implemented with a fast luminosity measurement.
- For CLIC-BDS L*=6m, the BBA tuning algorithm is \approx 10 times faster than the blind algorithm, however the reached luminosity is almost the half.
- Preliminary results for the L*=6m tuning study, shows that an optimisation parameter it is crucial to run successive iterations, in order to reach successful luminosities.

Future plans

- To find out the optimum parameters for each tuning step in order to run a complete BBA tuning algorithm.
- To run the Simplex tuning algorithm with a misalignment of $10\mu m$.