Muon Colliders Design & Simulation

R. B. Palmer (BNL) LCWS11 Granada, Spain 9/28/11

- Introduction to scheme
 - Proton Driver
 - $-\operatorname{Target}$ and phase rotation
 - Cooling (including space charge)
 - Acceleration
 - -Rings (including ν radiation)
- Power consumption & CLIC comparison
- Conclusion

- Muon Colliders certainly smaller,
- Use less power ?
- Cheaper ??
- But certainly less developed

New Task Force on Project X upgrades Gollwitzer

- Upgrade CW linac to 5 mA
- 3-8 GeV Pulsed Linac
- Accumulator, Buncher, and Trombone (Ankenbrandt)

Target & Capture New 20 T Hybrid with increased Shielding

- Copper coil gives 6 T
- Super-conducting solenoid give 14 T, tapering to 3 T
- Tungsten Carbide in water shielding for 4 MW 8 GeV beam Cu coil uses 15 MW SC coil OD is 4 m

New Phase Rotation $\rightarrow 12$ bunches (David Neuffer)

• Large ΔE small $\Delta t \rightarrow$ small ΔE larger Δt

Simulation

Captures $\approx 48\%$ of longitudinal phase space

- 6D cooling is best done at \approx 200 MeV/c method runs out at $\epsilon_{\perp} \approx 400 \ \mu m$ & $\epsilon_{\parallel} \approx 1 \ mm$
- To get to lower ϵ_{\perp} use highest field (40T) and Low energy At low energy long emittance grows, but this now acceptable

3 candidate 6D cooling lattices

- All simulated All have problems/limitations
- I will use Guggenheim as example

Final cooling to $\epsilon_{\perp} = 25 \ \mu \ m$

- 13 stages
- Cooling in hydrogen simmulated for all
- Matching and re-acceleration simulated only for last 2 stages Without space charge simulations look ok
- Circa 40 T HTS in resistive outsert under construction (PBL/BNL SBIR funded)

Space charge

Transverse
$$\frac{\Delta \nu_{\text{space}}}{\nu} = \left(\frac{N_{\mu}}{\sqrt{2\pi} \sigma_z}\right) \frac{r_{\mu} < \beta_{\perp} >}{2 \epsilon_{\perp} \beta_v \gamma^2}$$

For fixed $dp/p, \gamma, \ N_{\mu}$, then

$$\frac{\Delta \nu_{\rm space}}{\nu} \propto \epsilon_z \epsilon_{x,y}$$

 $\frac{\mathcal{E}'_{\text{long sc}}}{\mathcal{E}'_{\text{rf simulated}}} = \xi \approx \frac{0.032 \ Q \ g \ c}{\epsilon_o \ \gamma^2 \ \sigma_z^3 \ (\omega \ \mathcal{E} \ \eta \ \cos(\phi))_{sim}}$

For fixed $dp/p, \gamma, \ N_{\mu}, \mathcal{E}, \omega, \eta$, then

$$rac{{\cal E}'_{
m long \ sc}}{{\cal E}'_{
m simulated}} \propto \epsilon_z^3$$

Emittance plot

• Worst: longitudinal at end of 6 D and transverse early in Final

Transverse shifts in final cooling For 1.2 T transport solenoids between 40 T magnets

- This is maximum tune shift at bunch center in transport
- $\Delta \nu / \nu > 1$ will certainly not work

Mod Trans shifts in final cooling With increased transport fields

• $\Delta \nu / \nu \leq$ 50% probably now ok

• 2.7 T transport not excessive

Long space charge at end of 6D

	$\xi =$	$rac{\mathcal{E}}{\mathcal{E'}_{\mathrm{rf}}}$	long s simula	$\frac{1}{1}$ \approx		$\frac{032}{\gamma^2 \sigma}$	$\frac{Q c}{\frac{3}{z} (\omega)}$	$rac{g(b_{ m /})}{{\cal E} \eta }$	$\frac{a, \sigma_z}{\cos(\phi)}$	(a)	
N_{μ}	mom	ϵ_{\parallel}	σ_z	freq	$\mathcal{E}_{ m rf}$	η	b/a	g	\mathcal{E}'	${\mathcal E'}_{rf}$	ξ
10^{12}	${\sf MeV/c}$	mm	mm	MHz	MV/m				${\sf MV}/{\sf m}^2$	MV/m^2	
4.81	207	1.1	16.6	805	20.05	0.5	3	1.75	261	155	1.68

- This will not work
- \bullet Probably only fix is to avoid $\epsilon_{\parallel}~\leq~2~(mm)$
- \bullet Can we reach the same final emittances without first lowering ϵ_{\parallel} so much?

The new cooling challenge

Transverse cooling required to $\epsilon_{\perp}=0.24 \text{ mm}$ (vs 0.4 mm)

Step I

- \bullet Weaken emittance exchange to keep $\epsilon_{||}$ above 2 mm
- This now gives better transverse cooling

Step II: New non-flip cooling lattice

- 42 cm cell (vs. 68.75), momentum 160 MeV/c (vs. 200)
- Without flips, some angular momentum will be created
- A field flip before first 40 T stage should remove it

ICOOL Simulation

• Required emittance achieved

- Problem appears solved
- Fuller simulation with space charge required

Acceleration

4) 100-400 RCS n=23 Circ = 6283 m
5) 400-750 RCS n=27 Circ = 6283 m
both RCS pulsed at 15 Hz

• Transmission 65.2 %

$$R_B = 4.4 \, 10^{-24} \, \frac{N_\mu f E^3 t < B >}{D B} \quad \text{Sv} \quad \text{from regions of uniform B}$$
$$R_L = 6.7 \, 10^{-24} \, \frac{N_\mu f E^3 t < B > L}{D} \quad \text{Sv} \quad \text{from straight sections}$$

For $R_B = R_L = 10\%$ Fed limit = 0.1 mSv (10 mRad)

E	B(min)	L(max)
TeV	Т	m
1.5	0.25	2.4
3.0	1.5	0.28

But final focus is a special case because divergence is so large

MC Rings

3 TeV design is new; 6 TeV design is extrap. for same ν radiation

C of m Energy	1.5	3	6	TeV
Luminosity	1	4	12	$10^{34} \text{ cm}^2 \text{sec}^{-1}$
Muons/bunch	2	2	2	10^{12}
Total muon Power	7.2	11.5	11.5	MW
Ring <bending field=""></bending>	6.04	8.4	11.6	Т
Ring circumference	2.6	4.5	6	km
eta^* at IP $= \sigma_z$	10	5	2.5	mm
rms momentum spread	0.1	0.1	0.1	%
Depth	135	135	540	m
Repetition Rate	15	12	6	Hz
Proton Driver power	4	3.2	1.6	MW
Muon Trans Emittance	25	25	25	pi μ m
Muon Long Emittance	72,000	72,000	72,000	μ m

Note: Muon parameters the same for all energies

ESTIMATED WALL POWER

	Len	Static	Dynamic				Tot
		4 ⁰	rf	PS	4 ⁰	20 ⁰	
	m	MW	MW	MW	MW	MW	MW
p Driver (SC linac)							(20)
Target and taper	16			15.0	0.4		15.4
Decay and phase rot	95	0.1	0.8		4.5		5.4
Charge separation	14						
6D cooling before merge	222	0.6	7.2		6.8	6.1	20.7
Merge	115	0.2	1.4				1.6
6D cooling after merge	428	0.7	2.8			2.6	6.1
Final 4D cooling	78	0.1	1.5			0.1	1.7
NC RF acceleration	104	0.1	4.1				4.2
SC RF linac	140	0.1	3.4				3.5
SC RF RLAs	10400	9.1	19.5				28.6
SC RF RCSs	12566	11.3	11.8				23.1
Collider ring	2600	2.3		3.0	10		15.3
Totals	26777	24.6	52.5	18.0	21.7	8.8	145.6

Similar calculations for 3 TeV give Wall power = 159 MWSimilar calculations for 6 TeV give less Wall power

Compare 3 TeV $\mu^+\mu^-$ with e^+e^- CLIC

		$\mu^+\mu^-$	e^+e^-
Luminosity	$10^{34} \text{ cm}^2 \text{sec}^{-1}$	4	2
Detectors		2	1
eta^* at IP = σ_z	mm	5	0.09
Lepton Trans Emittance	μ m	25	0.02
rms bunch height	μ m	4	0.001
Total lepton Power	MW	11.5	28
Proton/electron Driver power	MW	3.2	188
Wall power	MW	159	465

- $\mu^+\mu^-$ luminosity twice CLIC's (for dE/E < 1%) & 2 detectors
- Spot sizes and tolerances much easier than CLIC's
- \bullet Wall power \approx 1/3 CLIC's
- But less developed
- Muon Accelerator Program (MAP) \rightarrow Feasibility Study

CONCLUSION

• Much simulation progress this year

 new capture magnet design, shorter phase rotation, charge separation & merge designs, 6D cooling simulations, sequence of acceleration with better transmission, design of tungsten shield pipe Detector background studies

• Space charge effects are significant

- but appear soluble

- Remaining major challenge
 - rf breakdown in magnetic fields
- Favorable comparisons with CLIC:
 - Luminosity greater than CLIC's
 - Estimated wall power pprox 1/3 of CLIC
- Extrapolation to higher energies thinkable

Solutions being tested