Beam Test with the DESY GridGEM TPC Prototype Module

with support from Lund and Japanese LCTPC groups

LCWS11

September 27th 2011

Ralf Diener, DESY

Testbeam Setup at DESY

- Set up in DESY II test beam, area T24/1 (e+/e- from 1 to 6 GeV/c)
- •Comprises:
 - PCMAG magnet, 1T magnetic field possible
 - Mounted on movable lifting stage (3 axis)
 - •HV and gas system including slow control system
 - Cosmic and beam trigger
 - Photo electron laser calibration system
- Outer silicon detector for reference
 - Work in progress based on ZEUS vertex detector

Large Prototype TPC

- •Large Prototype TPC:
 - •Based on experience with small prototypes
 - •Ø 72cm, L=61cm

- •Endplate designed to house up to seven readout modules
- •Modules:
 - •Designed to be similar to modules to be used in ILD TPC
 - •Dimensions: ~ 23x17cm²

GridGEM Mounting

- •Idea: replace frames to mount GEMs by a thin grid:
 - Grid made of Aluminum Oxide
 - •Based on studies in small prototype ($\emptyset \sim 30$ cm)
- Advantages:
 - Lightweight, integrated structure
 - •Improved flatness of GEM foil:
 - •less gain variations
 - better electric field homogeneity in the TPC
 - Simpler construction and possibility to cover large areas with minimal dead space
- No significant impact on overall resolution
- Very small dead area
- Material budget lower than with framed GEMs

GridGEM Module

- •Dimensions: ~ 23x17cm²
- •Triple GEM amplification
- •Grid divides area in four sectors
- •GEM design adapted:
 - •One side divided in 4 sectors (limits stored energy per sector)
 - •Other side: one sector covering whole area

IIL

GridGEM Module

- •In this iteration: simple pad plane
- •Only area in the middle covered by small pads (pitch: $\sim 1.26 \times 5.85 \text{ mm}^2$) and instrumented
- •Around: Larger pads (connected to ground)
- Read out using modified ALTRO electronics with PCA16 preamplifier @ 20MHz

Measurement Campaign

- •Testbeam effort in June/July 2011
- •Most runs taken without magnetic field
- •HV problems:
 - Insulation between pads and HV connection insufficient
 - Solved by adding additional glue
 - •Trips several times destroyed GEM sectors:
 - Protection resistor too far from GEM
 - Additional charge from coaxial cable increased released energy at trip
- •Data presented here:
 - •Taken without magnetic field
 - •Scan in Z over length of chamber at 11 positions

First look at the data

Run 17697, ~ 185mm from readout

Ralf Diener, DESY

LCWS11, September 27th 2011

İİĿ

Cuts

- •Rejected hits consisting of only one pulse
- •Cut out rows 1-2, 24-28 (edge effects) 6,10 (dead channels),13-14 (grid)

Hit Widths

- •Method:
 - •For each hit fill pulse charges and rφ position in histogram centered at 0
 - •Determine RMS of histogram
 - •Mean of RMS distribution taken as hit width

16

Triplet Resolution

- Straight line though hit above and below defines "track"
- •Residual: distance of middle hit from this line

•Point resolution:
$$\sigma_{res} = \sqrt{\frac{2}{3}} \sigma_{gaus}$$

:Ir

Last Slide

- A triple GridGEM module was constructed and tested in the Large Prototype at the DESY test beam stand
- •Several problems of the module design were identified and based on this experience a new iteration will be developed
- First look at the data shows reasonable results
- Further analysis ongoing
- •Test beam phase and following reconstruction lead to improvements in the software:
 - Extended CED event and reconstruction display
 - Reconstruction chain tested with real data and many bugs fixed
 - •New analysis code developed
 - •Further improvements ongoing
- Thanks to the Lund and Japanese colleagues which were a big support in many areas

