

Geiger mode avalanche photodiodes in particle detection

E. Vilella¹, <u>O. Alonso¹</u>, J. Trenado², A. Vilà¹, M. Vos³, L. Garrido² and A. Diéguez¹

¹Systems Instrumentation and Communications (SIC) – Dept. of Electronics ²Dept. of Structure and Constituents of Matter University of Barcelona (UB), Barcelona, Spain ³IFIC – University of Valencia (UV), Valencia, Spain

evilella@el.ub.es

Outline

Outline

Introduction

- Our GAPDs timeline
- Available technologies
- Test beam program

> 1mm x 1mm GAPD array

- FLC_APD_v1
- Pixel schematic
- Gated operation
- Results

Conclusions

Our GAPDs timeline

Department

Electronics

Universitat de Barcelona

ICCUB

Available technologies

Avalanche photodiode concept

o Geiger mode Avalanche Photodiodes (GAPDs)

- Pros
 - ✓ High intrinsic gain (no amplifier is needed)
 - ✓ Accurate time response (possible single BX detection)
 - ✓ Compatible with standard CMOS processes

• Cons

- × Afterpulses
- \times Dark counts $\succ \rightarrow$ Noise counts, indistinguishable from real events

ICCUB

- × Crosstalk
- × Reduction of detector performance
- × Increase of memory area to store the total hits

o It is mandatory to reduce noise counts! How?

- Through technology
- Introducing readout electronics for low noise GAPD pixels

Avalanche photodiodes in standard CMOS technologies

E. Vilella

Iniversitat de Barcelona

Departmen

• Intrinsic noise sources

- Dark counts
 - Spurious pulses due to thermal and tunneling carriers generated within the p-n juntion.
 - Depends on the doping profile (technology), quality of the process (sensor area), reverse bias overvoltage and temperature.
 - Measured in terms of frequency of generation or dark count rate (DCR). Typical values range from Hz to hundreds of kHz.
- Afterpulses
 - Correlated pulses due to charge carriers trapped during a previous avalanche and released some time later.
 - Depends on the trap density, the number of carriers generated during an avalanche and the lifetime of these carriers.

• Crosstalk

- Spurious pulses caused by interactions among adjacent pixels (electrical) or photons generated during an avalanche in a neighbouring pixel (optical).
- Depends on the sensor pitch, the number of carriers generated in an avalanche and the reverse bias overvoltage.

ICCUB

epartment

Test beam program (1)

• We plan to go to 2 test beams

- DESY (2011) Initial test beam with 6GeV electrons
 We expect to distinguish detection between neighbour pixels
- CERN (2012) Final test beam with 120GeV pions
 We expect to distinguish detection in an specific region of the pixel

• Test set-up

- DUT (1mm x 1mm GAPD array), PCB, scintillators and telescope (EUDET)
- A TLU is used to distribute the trigger
- Main worries → Hit density losses with distance and distortion in the particle path caused by test set-up materials
- Different ideas to reduce total material thickness
 - GAPD array with thin silicon wafer of 250µm
 - No chip package & wire bond the chip directly to the PCB
 - PCB perforated under the chip
- Running simulations with Geant4
 - Software to simulate the passage of particles through matter

ICCUB

Department

Universitat de Barcelona

Electro

Test beam program (2)

Geant4 studies

- Performed using 2 silicon wafers, 2 aluminum layers and 2 or 4 scintillators (test beam set-up)
- Sources \rightarrow electrons (6GeV) and pions (120GeV)

• Results

E. Vilella

	Detector at 2cm	X-Mean (µm)	X-Sigma (µm)	Y-Mean (µm)	Y-Sigma (µm)	Peak (µm)	R-Sigma (µm)
electrons	T.B. with 2 Sc.	-0.0801	16.2	0.008922	16.2	13	12.48
	T.B. with 4 Sc.	0.1474	17.6	0.07584	17.68	13	13.34
pions	T.B. with 2 Sc.	0.008092	0.7767	0.001725	0.7814	0.7	0.5769
	T.B. with 4 Sc.	0.0001457	0.8606	0.003204	0.8625	0.8	0.6955
	Detector at 10cm	X-Mean (µm)	X-Sigma (µm)	Y-Mean (µm)	Y-Sigma (µm)	Peak (µm)	R-Sigma (µm)
electrons	T.B. with 2 Sc.	-0.2033	16.91	0.18	46.88	35	39.25
	T.B. with 4 Sc.	0.3413	50.18	-0.06107	50.39	37	41.75
pions	T.B. with 2 Sc.	0.004929	2.092	0.00374	2.1	1.8	1.614
	T.B. with 4 Sc.	0.000984	2.301	0.00865	2.308	1.9	1.749

• We need distortion lower than pixel width (20µm)!

- T.B. at DESY (electrons) \rightarrow distortion is ~16µm
- Complicated to characterize (further studies are needed)
- T.B. at CERN (pions) \rightarrow distortion is ~0.5µm
- To measure detector resolution and active regions we need 1-2µm precision

AMS R3 - FLC_APD_v1 (1)

• Aim of the chip

- Characterize GAPDs response to MIPs in a test beam
 - Measurements of efficiency depending on position and time
 - Study the areas of sensitivity
 - Crosstalk characterization

o **Requirements**

- Minimum sensitive area is 1mm x 1mm
- Sensor area is 20µm x 100µm (optimized for ILC forward tracking)

• Not taken into account (by now)

- Fill factor (FF)
- Radiation tolerance
- Use the best technology in terms of FF, speed, noise and cost

ICCUB

Departm

AMS R3 - FLC_APD_v1 (2)

- 1. 10 x 43 GAPD array
- 2. Test photodiode
- 3. Test pixel
- 4. Control signal generation circuit
- 5. Pad LVDS

ICCUB

- 6. Active inhibit pixel
- 7. Current mode pixel

8.1 x 5 GAPD array with PAD layer

Universitat de Barcelona

Department

lectro

AMS R3 - FLC_APD_v1 (3)

LCWS11 Granada 26-30 September 2011

UNIVERSITAT DE BARCELONA B

Universitat de Barcelona

AMS R3 - FLC_APD_v1 (4)

• Pixel schematic and mode of operation

- Sensor and readout electronics monolithically integrated in the same die.
- Noise reduction through readout electronics (readout circuit for low overvoltage and gated operation).
- Digital output.

Free running vs. gated operation

• Free running

The APD is always active.

• Gated operation

Advantages of gated operation

Universitat de Barcelona

Gated operation 0

E. Vilella

Granada 26-30 September 2011

Department

Universitat de Barcelona

Electro

• It is possible to eliminate the afterpulsing probability by means of the gated operation.

• Leaving long enough t_{off} periods of 300ns.

ICCUB

0

Advantages of gated operation

E. Vilella

Department

of

Electronics

Universitat de Barcelona

• The probability to detect a dark count is reduced by using short t_{obs.}

DCR = dark counts \cdot t_{obs}

ICCUB

Department

Electronics

Universitat de Barcelona

Dead pixels in GAPD arrays

• Presence of dead pixels in GAPD arrays.

E. Vilella

C. Niclass et al., "Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes", IEEE Journal of Solid-State Circuits, vol. 40, no. 9, 2005.

ICCUB

Department

Electronics

Universitat de Barcelona

- The gated operation is also effective in avoiding sensor blindness around a triggering signal in GAPD arrays.
 - 3 x 3 GAPD array.
 - Colunn parallel readout (CLK2 acts as a row selector).

AMS R3 - Preliminary results

Universitat de Barcelona

Preliminary results 0

E. Vilella

The GAPD array has shown signs of life... Observation of noise counts for one output channel.

Conclusions

• Conclusions

- We plan to test the efficiency of GAPDs fabricated with 0.35µm HV-AMS technology in particle detection at 2 test beams very soon.
 - We expect to distinguish detection between neighbour pixels (DESY) and within one pixel (CERN).
- Given that we want to prove the efficiency of the sensor, some aspects have not been taken into account (fill-factor, radiation tolerance, best technology).
- The test set-up will be comprised of...
 - 1mm x 1mm GAPD array, satellite electronics, scintillators, EUDET telescope and TLU.
- The GAPD array consists of...
 - Digital pixels with integrated readout.
 - 20µm x 100µm sensors.
- The sensors are operated in the gated acquisition because...
 - Avoids afterpulses and reduces observed dark count.
 - Eliminates dead pixels.
 - Avoids sensor blindness.

Thank you for your attention

Questions and comments are welcome

Back-up slides

AMS R2 - GAPD pixels

GAPD & readout circuit

D

CLK

FF

Q

ICCUB

-0 V_{OUT}

CLK2

M_{N6}

CLK2

CLK1

 V_{DD}

• We developed readout circuits for low noise GAPD pixels

• Monolithically integrated with the sensor

V_{BD} + V_{OV}

Vs

GNDA (2G)

Vss (LS & TL)

κ

Α

Vbias

→t

 Comprised of electronics for gated operation and 3 different readout circuits

 V_{DD}

INH

RST

• Digital output

Vov

count

GNDA (2G)

VSS (LS, TL)

Vs ↑

Department

Flectronics

Universitat de Barcelona

E. Vilella

Department

of Electronics

Universitat de Barcelona

• Delay introduced by the electronics

• Total delay introduced by electronics is 1.65ns.

ICCUB