Development of Single- and Double-sided Ladders for the ILD Vertex Detector

J. Baudot on behalf of the PLUME coll.

LCWS/Granada – 29 Septembre 2011

Contents

- Framework of the developments
- Double-sided ladder development
 - x realisation and tests of prototype Nr 1
 - *x* next steps until/beyond DBD
- Unsupported single-sided ladder development
 - *x* 1st SERNWIETE prototype
 - *x* next steps until DBD
- Summary

R&D lines of CPS based ladders

- Ultra-light double-sided ladder : PLUME project
 - **x** Pixelised Ladder using Ultra-light Material Embedding
 - x Objectives :
 - → demonstrate feasibility of 2-sided ladder (0.3 % X0) for the ILD vertex detector by 2012 (DBD)
 - → evaluate benefits of 2-sided concept : σ_{sp} , redundancy, alignment, shallow angle pointing, elongated⊕square pixels
 - x Collaboration : Bristol DESY Oxford Strasbourg
- Unsupported single-sided ladder : SERNWIETE project
 - **x** SEnsor Row Neatly Wrapped In an Extra-Thin Envelope
 - **x** Objectives :
 - → demonstrate feasibility of unsupported concept (≤0.15 % X0)
 - ➔ for the ILD vertex detector by 2012 (DBD)
 - → evaluate thermo-mechanical properties : system integration, curved supports
 - X Context : EU project Had. Phys. 2 (coll. with Univ. Frankfurt & CERN)

PLUME-2010 design

- Goals for 1st design
 - *x* ensure electrical functionality with 6 MIMOSA 26
 - *x* address the full fabrication & assembly chain
 - x validate concept with electrical+mechanical+thermal tests
 - → <u>Note:</u> MIMOSA 26 not designed for power pulsing
- Key features
 - x sensors thinned down to 50 μ m
 - x low mass cable = 140 μ m thick with 2x20 μ m copper
 - → much wider (24 mm) than sensor (14 mm) for electrical "safety"
 - *x* spacer = SiC foam at 8% density
 - x 1 ladder = 8M pixels, 10g, 0.6 % X_0 (cross section) sensitive surface ~ 12.7 x 1.1 cm² on two sides

\rightarrow 2 functional ladders produced

PLUME-2010 tests

- Cooling
 - *x* ambient air flow between 2 to 3 m/s (limited by fan power so far)
 - *x* enough to maintain temperatures below 50 °C on sensors
 - → stronger flow under design
- Mechanical
 - *x* surface survey on mechanical prototype
 - → Height RMS ~ 20 µm
 - *x* vibration monitoring still to be done
- Electrical (all 12 sensors operating)
 - x Fixed Pattern Noise ~ 0.3-0.4 mV
 - *x* Thermal noise ~ 0.9-1.0 mV
 - *x* Fake rate < 10⁻⁴ hits/pixel/frame for threshold = 6x noise
 - *x* Fake rate < 10⁻⁵ hits/pixel/frame for threshold = 8x noise
 - **x** Ladder operation is similar to individual sensor operation
- Test beam
 - x Foreseen early November @ CERN-SPS, 120 GeV π-

- Cooling
 - *x* Difficulties to reproduce measurements
 - → Average T well reproduced
 - Distribution of T depends crucially on material modeling (ex. metal lines)
 - *x* Impact of heat conductivity between sensors
 - mechanical stitching between sensors could reduce T by ~ 5 °C

- Mechanical
 - *x* Importance of sandwich effect
 - ➔ foam much less stiff possible
 - predicted vibration frequency to be measured soon
 - *x* Investigation of single-sided ladder to be done

		SIC 10am 4%	RVC
support mat. Budget (X0)	0.18 %	0.09 %	0.03 %
1 st vibration mode (Hz)	260	270	230
2 nd vibration mode (Hz)	990	980	450
3 rd vibration mode (Hz)	1280	1110	670
static sagging (µm)	4	5	6

PLUME-2011 design

Mimosa 26

- Modification wrt 2010 design
 - *x* priority to material budget
 - *x* reduced cable width
 - → only 4 additional mm / sensor width
 - → metal density higher → helps heat transfer
 - *x* low-mass cable with aluminum
 - → provided by CERN
 - *x* SiC foam (spacer) lower density ~ 4%
- Preliminary material budget
 - x transverse cross-section
 - → 0.344 % X0 = 2x0.053(sensors) + 2x0.058(AI flex) + 0.092(SiC4%) + 0.030(SMD)
 - x weighted budget accounting for overlaps (MIMOSA 26 sensitive layer=10 mm wide)
 - → 0.502 % X0 = 2x0.069 (sensor) + 2x0.098 (AI flex) + 0.138 (SiC4%) + 0.030 (SMD)
- Schedule
 - *x* copper cable version fabricated, in test
 - *x* aluminum cable version expected in Oct.
 - *x* semi-automatic positioning machine for module assembly available in Nov.
 - x first ladder in 2012-Q1
 - *x* ladder small prod. (~10) \gg mid-2012 \rightarrow "VXD sector" test in AIDA

SERNWIETE

- Design features
 - x realisation by R. De Oliveira team @ CERN
 - *x* embed sensor one by one
 - → alleviates traces-pad alignment difficulty
 - allows individual testing before assembly
 - x processing of further metal layers decoupled from sensor embedding
 - → 3 additional metal layers
 - x metal is aluminum
- sensor embedded \rightarrow stand higher mechanical stress
 - → allows deeper thinning (~30 µm)
 - allows bending
- Material budget
 - x sensor ~ 0.03 % X0
 - **x** Metal ≤ 0.02 % X0
 - *x* polyimide $\leq 0.1 \% X0$
 - **x** Overall ≤ 0.15 % X0

SERNWIETE

- Status
 - *x* first single sensor (MIMOSA 26) embedded, August 2011
 - *x* not functional due to shallow Vias
- Further steps
 - x new trial this Fall
 - x 2-sensors cable in December 2011
 - *x* thermo-mechanical studies for 2012
 - *x* 6-sensors cable < Summer 2012

Mechanical sample embedded and bent \rightarrow No cracks visible on the silicon, still await electrical confirmation

Detail of vias on sensor pads

Summary

- Double-sided ladder (PLUME)
 - **x** A first (functionally) successful design in 2010 to be fully validated in Nov. 2011
 - x New design in 2011 to reach material budget of (cross sect.) O(0.03) % X₀
 - **x** Simulation effort to validate models to predict new designs performances
 - **x** "infrastructures" in place for further designs and/or other sensors
- Unsupported Single-sided ladder (SERNWIETE)
 - Quite promising, probably 1st manifestation of new integrations methods/technics within the reach of CMOS pixel sensors
 - **x** Still expecting a first functional prototype (<2012 according to schedule)
- Applications
 - **x** PLUME beam tests will be an important milestone for the ILD
 - x 6 to 8 ladders (12 x MIMOSA 26 each) will run during long beam periods in the framework of the FP7-AIDA project
 - → Complementary experience wrt STAR-PXL (start of run: FY2012)

Additional slides

X

PLUME-2010 electrical tests

Scan of the discriminator thresholds with all 6 sensors switched on (5 tuned for 1% occupancy)

Materials for stiffener/spacer

Material Selection Graphs

From Joel Goldstein, Brisol U.

PLUME-2010 module assembly

PLUME-2010 ladder assembly

- Modules
 - *x* ~30 low mass cables produced (all copper)
 - *x* 5 equipped with 6 MIMOSA26
 - → All electrically functional
 - → 3 with 1 or 2 non-functional sensors

- Ladders
 - x 3 assembled
 - → 1 with dummy sensors
 - → 1 electrically functional
 - → 1 still curing

PLUME-2010 tests

IR camera thermal measurement on a single module

MIMOSA 26 internal (diode) temp. measurement on ladder

only 1 over the 2 modules switched on

 \rightarrow importance of heat conductivity among sensors for efficient cooling by air

Ladder supported at both ends

	SiC foam 8%	SiC foam 4%	RVC
1 st vibration mode (Hz)	260	270	230
2 nd vibration mode (Hz)	990	980	450
3 rd vibration mode (Hz)	1280	1110	670
static sagging (µm)	4	5	6

• Improved T homogeneity ← higher metal layer density

Max. Temperature on the sensors