Feasibility study of measurement of Higgs pair creation in a gamma-gamma collider

Shin-ichi Kawada

Advanced Sciences of Matter, Hiroshima University

Collaborators :

Katsumasa Ikematsu (Univ. Siegen), Tohru Takahashi (Hiroshima Univ.), Keisuke Fujii (KEK), Yoshimasa Kurihara (KEK), and ILC physics working group

Outline

- Motivation
- Signal & Background
- Simulation & Analysis
- Result
- Summary

T. Takahashi's talk @ IWLC2010

Summary

- We tried to see γγ -> HH in a photon collider based on TESLA optimistic parameters.
- gg CM energy of 270GeV is optimum for mh =120GeV
- backdournds
 - $-\gamma\gamma$ ->WW has 10⁶ times lager cross section
 - $-\gamma\gamma$ ->ZZ has 10³ times lager cross section
- It seems possible to suppress backgrounds with improved jet clustering technique.
 - statistical significance of 4.6 expected for WW and ZZ cut with perfect jet clustering

My talk is including

these topics.

- more to do
 - optimize NN training
 - study jet clustering improveme
 - γγ->bbbb backgroud
 - we believe it is small for danger
 - higher Higgs mass

LCWS11 @ Granada, Spain (2011/9/29)

Motivation

Final goal : measuring Higgs self-coupling constant $\boldsymbol{\lambda}$

Beam parameters

	x3.76	x4.8
E _e (GeV)	210	195
n(10 ¹⁰)	2	2
σ _z (mm)	0.35	0.35
γε _{x/y} (mrad)	2.5/0.03	2.5/0.03
β _{x/y} (mm) @ IP	1.5/0.3	1.5/0.3
σ _{x/y} (nm)	96/4.7	99/5.5
λ _L (nm)	1054	770
$x = 4\omega E_e/m_e^2$	3.76	4.8
Pulse Energy(J)	10	10
L _{geo} (e-e-)[10 ³⁴ cm ⁻² s ⁻¹]	8.7	8.1
$L_{peak}(\gamma\gamma)[10^{34}cm^{-2}s^{-1}]$	1.2	0.7
L _{tot} (γγ) [10 ³⁴ cm ⁻² s ⁻¹]	12.6	5.88

based on TESLA optimistic parameter

x=3.76 in this study

Luminosity distribution

Signal & Backgrounds

8

Main backgrounds $\gamma\gamma \rightarrow WW : 1.462 \times 10^7 \text{ events/year}$ $\gamma\gamma \rightarrow ZZ : 1.187 \times 10^4 \text{ events/year}$ $\gamma\gamma \rightarrow 4b : 1.37 \times 10^5 \text{ events/year}$

Signal γγ->HH : 16 events/year

$$N_events = L(/year) \int \sigma(W_{\gamma\gamma}) \frac{dL}{dW_{\gamma\gamma}} dW_{\gamma\gamma}$$

Event signature (1)

- γγ->HH
 - HH->4b
 - $-M_{b\overline{b}} = M_{H}(120GeV)$

Event signature (2)

- γγ->WW
 - $-\sigma_{\gamma\gamma->WW} \simeq 10^6 \sigma_{\gamma\gamma->HH}$
 - suppressed by b-tagging
- γγ->ZZ
 - ZZ->4b same as HH->4b
 - discriminate only by mass difference
- γγ->4b
 - Mass distribution is different from signal, but still have events near signal region (~120GeV).
 - Angular distribution is different from signal.

Simulation & Analysis

1. Event generation & Detector simulation

2. Event reconstruction

- 1. jet clustering
- 2. b-tagging
 - n_{sig} method
- 3. jet pairing
- 3. Event selection
 - 1. pre-selection
 - 2. Neural Network (NN)

Event reconstruction (2) --- b-tagging

When there are n_{offv} tracks which satisfy this equation, we regarded this quark as a b-quark.

relatively simple b-tagging method can be improved by further study

Event selection by Neural Network (NN)

- 3 steps
 - 1. W filter
 - 2. 4b filter
 - 3. Z filter
- Maximize statistical significance

significance
$$\equiv \frac{N_{signal}}{\sqrt{N_{signal} + N_{BG}}}$$
 N : # of events

Distribution of NN inputs --- WW

Distribution of NN inputs --- 4b

Distribution of NN inputs --- ZZ

Cut summary

	нн	WW	ZZ	4b
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(75000000)	(1000000)	(1000000)
pre-selection	47.93	81655	5167	84491
	(29958)	(83777)	(87057)	(287776)
W filter	12.34	8.772	193.4	568.4
	(7713)	(9)	(3259)	(1936)
4b filter	8.238	0	84.40	13.21
	(5149)	(0)	(1422)	(45)
Z filter	4.994	0	7.359	5.872
	(3121)	(0)	(124)	(20)
significance = $\frac{N_{signal}}{\sqrt{N_{signal} + N_{BG}}} = 1.17$				

Further improvement

- WW BG : almost completely suppressed!
- 4b & ZZ BG remained
- Possible improvement --- jet clustering

correct color singlet information

improve mass resolution, b-tagging efficiency

We investigated using generator information for HH, WW, ZZ (not for 4b).

Improve mass resolution

Cut summary with perfect jet clustering

	нн	WW	ZZ	4b
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(7500000)	(1000000)	(1000000)
pre-selection	46.64	55836	4172	84491
	(29152)	(57287)	(70292)	(287776)
W filter	38.58	4.873	98.84	2179
	(24115)	(5)	(1667)	(7422)
4b filter	34.50	2.924	27.66	2.642
	(21562)	(3)	(466)	(9)
Z filter	33.06	2.924	5.935	2.642
	(20662)	(3)	(100)	(9)
significance = $\frac{N_{signal}}{\sqrt{N_{signal} + N_{BG}}} = 4.95$				

Summary

- We investigated γγ->HH in a gamma-gamma collider based on TESLA optimistic parameters.
- Possible to suppress huge backgrounds with improved jet clustering.
 - Significance ~ 5 with 5 year PLC run
- Further study
 - jet clustering T. Suehara's talk, T. Tanabe's talk
 - b-tagging
- in this workshop
 - other decay modes

Backup slides

About PLC

LCWS11 @ Granada, Spain (2011/9/29)

Contribution of self-coupling is different way. Energy threshold of $\gamma\gamma$ process is lower than e⁺e⁻ process.

γγ->b b-bar b b-bar (4b) events

(2-jet invariant mass) < 15GeV were cut.
We assume that we can cut these events.
--> 5.872*10⁴ events/year

Calculation of 4b BG

ELWK = 2 QCD = 2 Calculated with GRACE

Jet clustering

JADE clustering

$$\frac{(p_i + p_j)^2}{E_{vis}^2} < Y_{cut}$$

 $\begin{array}{l} p_i: 4\text{-momentum of particle i} \\ E_{vis}: visible energy \\ Y_{cut}: Y_{cut} value of jet clustering \end{array}$

Event selection --- pre-selection

pre-selection

 β >0.05, $|\cos\theta|$ <0.99 more than 3 b-flavor jets with (n_{sig} = 3.0, n_{offv} = 1) analysis more than 2 b-flavor jets with (n_{sig} = 3.0, n_{offv} = 2) analysis

β : Lorentz factor of reconstructed particle

 $\boldsymbol{\theta}$: angle between reconstructed particle and beam axis

b-tagging to suppress huge WW BG mainly

Sphericity, Y-value

normalized momentum tensor M_{ab}

 $M_{ab} = \sum_{i} p_{ia} p_{ib} / \sum_{i} p_{i}^{2} p_{i}$: momentum of particle i 3*3 matrix $\stackrel{\scriptstyle {\scriptstyle \sim}}{}$ eigenvalue $Q_1, Q_2, Q_3(Q_1 \leq Q_2 \leq Q_3)$ sphericity = $\frac{3}{2}(Q_1 + Q_2)$ Y - value = $\frac{\sqrt{3}}{2}(Q_2 - Q_1)$

W filter

• 9 input parameters

- $-\chi_{H}^{2}$, χ_{Z}^{2}
- visible energy
- # of tracks
- Y_{cut} value of jet clustering
- longitudinal momentum, transverse momentum
- # of b-flavor jets (nsig = 3.5, noffv = 1 analysis)
- # of b-flavor jets (nsig = 3.5, noffv = 2 analysis)

4b filter

- 17 input parameters
 - no relation to χ^2 (11)
 - visible energy, # of tracks, Y_{cut} value of jet clustering, thrust, sphericity, Y-value, cosθ of jet (4), maximum |cosθ of jet|
 - jet pairing of least χ_{H}^{2} (3)
 - $\chi_{\rm H}^2$, cos θ of 2-jet (2)
 - jet pairing of least χ_v^2 (3)
 - χ_{γ}^2 , cos θ of 2-jet (2)

$$\chi_{\gamma}^2 = \frac{(M_1 - 10)^2}{\sigma_{2j}^2} + \frac{(M_2 - 10)^2}{\sigma_{2j}^2}$$

10 : invariant mass of b b-bar system

Z filter

• 10 input parameters

- $-\chi_{H}^{2}, \chi_{W}^{2}, \chi_{Z}^{2}$
- energy of 2-jet (2)
- visible energy
- # of tracks
- longitudinal momentum
- # of b-flavor jets (nsig = 3.5, noffv = 1 analysis)
- # of b-flavor jets (nsig = 3.5, noffv = 2 analysis)

Cut summary JADE clustering & 4b (optimistic)

	signal	WW	ZZ	4b (opt)
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(75000000)	(1000000)	(1000000)
pre-selection	47.93	81655	5167	70851
	(29958)	(83777)	(87057)	(241318)
W filter	12.34	8.772	193.4	318.0
	(7713)	(9)	(3259)	(1083)
4b (opt) filter	7.262	1.949	73.89	7.340
	(4539)	(2)	(1245)	(25)
Z filter	4.823	0.9747	9.377	3.817
	(3018)	(1)	(158)	(13)

significance = $\frac{4.823}{\sqrt{4.823 + 0.9747 + 9.377 + 3.817}} = 1.11$

Cut summary JADE clustering & 4b (pessimistic)

	signal	WW	ZZ	4b (pes)
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(75000000)	(1000000)	(1000000)
pre-selection	47.93	81655	5167	84491
	(29958)	(83777)	(87057)	(287776)
W filter	12.34	8.772	193.4	568.4
	(7713)	(9)	(3259)	(1936)
4b (pes) filter	8.238	0	84.40	13.21
	(5149)	(0)	(1422)	(45)
Z filter	4.994	0	7.359	5.872
	(3121)	(0)	(124)	(20)

significance = $\frac{4.994}{\sqrt{4.994 + 0 + 7.359 + 5.872}} = 1.17$

Cut summary

perfect jet clustering & 4b (optimistic)

	signal (cheat)	WW (cheat)	ZZ (cheat)	4b (opt)
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(75000000)	(1000000)	(1000000)
pre-selection	46.64	55836	4172	70851
	(29152)	(57287)	(70292)	(241318)
W (cheat) filter	38.58	4.873	98.84	1331
	(24115)	(5)	(1667)	(4535)
4b (opt) filter	35.56	3.899	41.78	3.817
	(22223)	(4)	(704)	(13)
Z (cheat) filter	33.26	1.949	5.045	3.817
	(20787)	(2)	(85)	(13)
significance =		33.26		= 5 01

 $\frac{1}{\sqrt{33.26 + 1.949 + 5.045 + 3.817}} -$

Ο

Cut summary

perfect jet clustering & 4b (pessimistic)

	signal (cheat)	WW (cheat)	ZZ (cheat)	4b (pes)
expected events	80	73100000	59350	293600
(# of MC samples)	(50000)	(75000000)	(1000000)	(1000000)
pre-selection	46.64	55836	4172	84491
	(29152)	(57287)	(70292)	(287776)
W (cheat) filter	38.58	4.873	98.84	2179
	(24115)	(5)	(1667)	(7422)
4b (pes) filter	34.50	2.924	27.66	2.642
	(21562)	(3)	(466)	(9)
Z (cheat) filter	33.06	2.924	5.935	2.642
	(20662)	(3)	(100)	(9)
significance = $\frac{33.06}{\sqrt{33.06 + 2.924 + 5.935 + 2.642}} = 4.95$				

LCWS11 @ Granada, Spain (2011/9/29)