Feasibility study of measurement of Higgs pair creation in a gamma-gamma collider

Shin-ichi Kawada

Advanced Sciences of Matter, Hiroshima University

Collaborators :
Katsumasa Ikematsu (Univ. Siegen), Tohru Takahashi (Hiroshima Univ.),
Keisuke Fujii (KEK), Yoshimasa Kurihara (KEK), and ILC physics working group

Outline

- Motivation
- Signal \& Background
- Simulation \& Analysis
- Result
- Summary

T. Takahashi's talk @ IWLC2010

Summary

- We tried to see $\gamma \gamma$-> HH in a photon collider based on TESLA optimistic parameters.
- gg CM energy of 270 GeV is optimum for $\mathrm{mh}=120 \mathrm{GeV}$
- backdournds
- $\gamma \gamma->$ WW has 10^{6} times lager cross section
- $\gamma \gamma->$ ZZ has 10^{3} times lager cross section
- It seems possible to suppress backgrounds with improved jet clustering technique.
- statistical significance of 4.6 expected for $W W$ and $Z Z$ cut with perfect jet clustering
- more to do
- optimize NN training
- study jet clustering improveme
- $\gamma \gamma$->bbbb backgroud
- we believe it is small for danger

My talk is including these topics.

- higher Higgs mass

Motivation

Final goal : measuring Higgs self-coupling constant λ

Before the final goal...

We have to investigate the feasibility of measurement of Higgs pair creation in a PLC.

Optimizing collision energy

sensitivity $\equiv \frac{\left|N(\delta \kappa)-N_{S M}\right|}{\sqrt{N_{o b s}}}=\frac{L\left|\eta \sigma(\delta \kappa)-\eta^{\prime} \sigma_{S M}\right|}{\sqrt{L\left(\eta \sigma(\delta \kappa)+\eta_{B G} \sigma_{B G}\right)}}$

Beam parameters

	$\times 3.76$	x4.8	based on TESLA optimistic parameter
$\mathrm{E}_{\mathrm{e}}(\mathrm{GeV})$	210	195	
$\mathrm{n}\left(10^{10}\right)$	2	2	
$\sigma_{z}(\mathrm{~mm})$	0.35	0.35	
$\nu \varepsilon_{x / y}(\mathrm{mrad})$	2.5/0.03	2.5/0.03	$x=3.76$ in this study
$\beta_{x / y}(\mathrm{~mm}) @ \mathrm{IP}$	1.5/0.3	1.5/0.3	
$\sigma_{x / y}(\mathrm{~nm})$	96/4.7	99/5.5	
$\lambda_{L}(\mathrm{~nm})$	1054	770	
$x=4 \omega E_{e} / m_{e}{ }^{2}$	3.76	4.8	
Pulse Energy (J)	10	10	
$\mathrm{L}_{\text {geo }}(\mathrm{e}-\mathrm{e}-)\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	8.7	8.1	
$L_{\text {peak }}(\gamma \gamma)\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1.2	0.7	
$L_{\text {tot }}(\gamma \gamma)\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	12.6	5.88	

Luminosity distribution

$L(/$ year $) \int \sigma\left(W_{\gamma \gamma}\right) \frac{d L}{d W_{\gamma \gamma}} d W_{\gamma \gamma}=16$ events/year

Signal \& Backgrounds

\# of events

$$
N_{-} \text {events }=L(/ \text { year }) \int \sigma\left(W_{r \gamma}\right) \frac{d L}{d W_{r \gamma}} d W_{\gamma \gamma}
$$

Signal
$\mathrm{\gamma}$->HH: 16 events/year
Main backgrounds
$\gamma Y->W W: 1.462 * 10^{7}$ events/year
$\gamma \mathrm{Y}$->ZZ : $1.187 * 10^{4}$ events/year
γY->4b : $1.37^{*} 10^{5}$ events/year

Event signature (1)

- YV ->HH
- HH->4b
$-M_{b \bar{b}}=M_{H}(120 \mathrm{GeV})$

Event signature (2)

- $\mathrm{p} \mathrm{p}->\mathrm{WW}$
$-\sigma_{\gamma \gamma->w w} \sim 10^{6} \sigma_{\gamma p->H H}$
- suppressed by b-tagging
- $\gamma \mathrm{Y}->Z Z$
- ZZ->4b same as HH->4b
- discriminate only by mass difference
- $\mathrm{\gamma} \boldsymbol{\gamma}$->4b
- Mass distribution is different from signal, but still have events near signal region ($\sim 120 \mathrm{GeV}$).
- Angular distribution is different from signal.

Simulation \& Analysis

1. Event generation \& Detector simulation
2. Event reconstruction
3. jet clustering
4. b-tagging

- $\mathrm{n}_{\text {sig }}$ method

3. jet pairing
4. Event selection
5. pre-selection
6. Neural Network (NN)

Event reconstruction (1)

information of mass

$$
\chi_{i}^{2}=\frac{\left(M_{1}-M_{i}\right)^{2}}{\sigma_{2 j}^{2}}+\frac{\left(M_{2}-M_{i}\right)^{2}}{\sigma_{2 j}^{2}}
$$

M_{1}, M_{2} : reconstructed mass
$\mathrm{i}: \mathrm{H}, \mathrm{W}, \mathrm{Z}, \mathrm{b} \overline{\mathrm{b}}$
$\sigma_{2 j}$: mass resolution

Event reconstruction (2) --- b-tagging

$\mathrm{n}_{\text {sig }}$ method

When there are $\mathrm{n}_{\text {offiv }}$ tracks which satisfy this equation, we regarded this quark as a b-quark.

relatively simple b-tagging method

can be improved by further study

Event selection by Neural Network (NN)

- 3 steps

1. W filter
2. 4b filter
3. Z filter

- Maximize statistical significance
significance $\equiv \frac{N_{\text {signal }}}{\sqrt{N_{\text {signal }}+N_{B G}}} \mathrm{~N}: \#$ of events

Distribution of NN inputs --- WW

Distribution of NN inputs --- 4b

Distribution of NN inputs --- ZZ

Cut summary

	HH	WW	Z2	4b
expected events (\# of MC samples)	$\begin{gathered} 80 \\ (50000) \end{gathered}$	$\begin{gathered} 73100000 \\ (75000000) \end{gathered}$	$\begin{gathered} 59350 \\ (1000000) \end{gathered}$	$\begin{gathered} 293600 \\ (1000000) \end{gathered}$
pre-selection	$\begin{gathered} 47.93 \\ (29958) \end{gathered}$	$\begin{gathered} 81655 \\ (83777) \end{gathered}$	$\begin{gathered} 5167 \\ (87057) \end{gathered}$	$\begin{gathered} 84491 \\ (287776) \end{gathered}$
W filter	$\begin{gathered} 12.34 \\ (7713) \end{gathered}$	$\begin{gathered} 8.772 \\ \text { (9) } \end{gathered}$	$\begin{gathered} 193.4 \\ (3259) \end{gathered}$	$\begin{gathered} 568.4 \\ (1936) \end{gathered}$
4b filter	$\begin{aligned} & 8.238 \\ & (5149) \end{aligned}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 84.40 \\ (1422) \end{gathered}$	$\begin{gathered} 13.21 \\ (45) \end{gathered}$
Z filter	$\begin{gathered} 4.994 \\ (3121) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{aligned} & 7.359 \\ & (124) \end{aligned}$	$\begin{gathered} 5.872 \\ (20) \end{gathered}$
$\text { significance }=\frac{N_{\text {signal }}}{\sqrt{N_{\text {signal }}+N_{B G}}}=1.17$				

Further improvement

- WW BG : almost completely suppressed!
- 4b \& ZZ BG remained
- Possible improvement --- jet clustering
correct color singlet information
\square improve mass resolution, b-tagging efficiency
We investigated using generator information for HH, WW, ZZ (not for 4b).

Improve mass resolution

Cut summary with perfect jet clustering

	HH	WW	ZZ	4b
expected events (\# of MC samples)	80	(50000)	73100000	59350
(75000000)	(1000000)	(10036000		
pre-selection	46.64	55836	4172	84491
	(29152)	(57287)	(70292)	(287776)
W filter	38.58	4.873	98.84	2179
	(24115)	(5)	(1667)	(7422)
4b filter	34.50	2.924	27.66	2.642
	(21562)	(3)	(466)	(9)
Z filter	33.06	$\mathbf{2 . 9 2 4}$	$\mathbf{5 . 9 3 5}$	$\mathbf{2 . 6 4 2}$
	(20662)	$\mathbf{(3)}$	$\mathbf{(1 0 0)}$	$\mathbf{(9)}$

$$
\text { significance }=\frac{N_{\text {signal }}}{\sqrt{N_{\text {signal }}+N_{B G}}}=4.95
$$

Summary

- We investigated $\gamma \mathrm{\gamma}->H H$ in a gamma-gamma collider based on TESLA optimistic parameters.
- Possible to suppress huge backgrounds with improved jet clustering.
- Significance ~ 5 with 5 year PLC run
- Further study
- jet clustering \quad T. Suehara's talk, T. Tanabe's talk
-b-tagging \quad in this workshop
- other decay modes

Backup slides

About PLC

Comparison of $\gamma \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-}$process

$$
\gamma \gamma \rightarrow H H \quad e^{+} e^{-} \rightarrow Z H H
$$

- Higgs self-coupling

Contribution of self-coupling is different way. Energy threshold of $\gamma \gamma$ process is lower than $e^{+} e^{-}$process.

$\gamma \mathrm{p}$->b b-bar b b-bar (4b) events

: color string

(2-jet invariant mass) < 15 GeV were cut.
We assume that we can cut these events.
--> 5.872*104 events/year

Calculation of 4 b BG

$$
d->b
$$

ELWK = 2
 QCD = 2
 Calculated with GRACE

Jet clustering

JADE clustering

$$
\frac{\left(p_{i}+p_{j}\right)^{2}}{E_{v i s}^{2}}<Y_{c u t}
$$

p_{i} : 4-momentum of particle i
$\mathrm{E}_{\mathrm{vis}}$: visible energy
$\mathrm{Y}_{\text {cut }}: \mathrm{Y}_{\text {cut }}$ value of jet clustering

Event selection --- pre-selection

pre-selection

$\beta>0.05,|\cos \theta|<0.99$
more than 3 b-flavor jets with ($\mathrm{n}_{\text {sig }}=3.0, \mathrm{n}_{\text {offiv }}=1$) analysis more than 2 b-flavor jets with ($n_{\text {sig }}=3.0, n_{\text {offiv }}=2$) analysis
β : Lorentz factor of reconstructed particle
θ : angle between reconstructed particle and beam axis
b-tagging
to suppress huge WW BG mainly

Sphericity, Y-value

normalized momentum tensor M_{ab}

$$
\begin{gathered}
\widetilde{M_{a b}=}=\sum_{\text {3* }} p_{i a} p_{i b} / \sum_{i} p_{i}^{2} p_{i} \text { : momentum of particle i } \\
\text { eigenvalue } Q_{1}, Q_{2}, Q_{3}\left(Q_{1} \leq Q_{2} \leq Q_{3}\right) \\
\text { sphericity }=\frac{3}{2}\left(Q_{1}+Q_{2}\right) \\
Y-\text { value }=\frac{\sqrt{3}}{2}\left(Q_{2}-Q_{1}\right)
\end{gathered}
$$

W filter

- 9 input parameters
$-\chi_{H}{ }^{2}, \chi_{Z}{ }^{2}$
- visible energy
- \# of tracks
$-Y_{\text {cut }}$ value of jet clustering
- longitudinal momentum, transverse momentum
- \# of b-flavor jets (nsig = 3.5, noffv = 1 analysis)
- \# of b-flavor jets (nsig = 3.5, noffv = 2 analysis)

4b filter

- 17 input parameters
- no relation to χ^{2} (11)
- visible energy, \# of tracks, $\mathrm{Y}_{\text {cut }}$ value of jet clustering, thrust, sphericity, Y -value, $\cos \theta$ of jet (4), maximum |cos θ of jet|
- jet pairing of least $\chi_{H}{ }^{2}(3)$
- $\chi_{H}{ }^{2}, \cos \theta$ of 2-jet (2)
- jet pairing of least $\chi_{\nu}{ }^{2}(3)$
- $\chi_{\nu}{ }^{2}, \cos \theta$ of 2-jet (2)

$$
\chi_{V}^{2}=\frac{\left(M_{1}-10\right)^{2}}{\sigma_{2 j}^{2}}+\frac{\left(M_{2}-10\right)^{2}}{\sigma_{2 j}^{2}}
$$

10 : invariant mass of b b-bar system

Z filter

- 10 input parameters
$-\chi_{H}{ }^{2}, \chi_{W}{ }^{2}, \chi_{Z}{ }^{2}$
- energy of 2-jet (2)
- visible energy
- \# of tracks
- longitudinal momentum
- \# of b-flavor jets (nsig = 3.5, noffv = 1 analysis)
- \# of b-flavor jets (nsig = 3.5, noffv = 2 analysis)

Cut summary

JADE clustering \& 4b (optimistic)

	signal	WW	ZZ	4b (opt)
expected events (\# of MC samples)	80	73100000	59350	293600
(50000)	(75000000)	(1000000)	(1000000)	
pre-selection	47.93	81655	5167	70851
	(29958)	(83777)	(87057)	(241318)
W filter	12.34	8.772	193.4	318.0
	(7713)	(9)	(3259)	(1083)
4b (opt) filter	7.262	1.949	73.89	7.340
	(4539)	(2)	(1245)	(25)
Z filter	4.823	$\mathbf{0 . 9 7 4 7}$	$\mathbf{9 . 3 7 7}$	$\mathbf{3 . 8 1 7}$
	$\mathbf{(3 0 1 8)}$	$\mathbf{(1)}$	$\mathbf{(1 5 8)}$	$\mathbf{(1 3)}$

$$
\text { significance }=\frac{4.823}{\sqrt{4.823+0.9747+9.377+3.817}}=1.11
$$

Cut summary

JADE clustering \& 4b (pessimistic)

	signal	WW	ZZ	4b (pes)
expected events (\# of MC samples)	80 (50000)	73100000	59350	293600
(75000000)	(1000000)	(1000000)		
pre-selection	47.93	81655	5167	84491
	(29958)	(83777)	(87057)	(287776)
W filter	12.34	8.772	193.4	568.4
	(7713)	(9)	(3259)	(1936)
4b (pes) filter	8.238	0	84.40	13.21
	(5149)	$\mathbf{(0)}$	(1422)	(45)
Z filter	4.994	$\mathbf{0}$	$\mathbf{7 . 3 5 9}$	$\mathbf{5 . 8 7 2}$
	$\mathbf{(3 1 2 1)}$	$\mathbf{(0)}$	$\mathbf{(1 2 4)}$	$\mathbf{(2 0)}$

$$
\text { significance }=\frac{4.994}{\sqrt{4.994+0+7.359+5.872}}=1.17
$$

Cut summary

perfect jet clustering \& 4 b (optimistic)

	signal (cheat)	WW (cheat)	ZZ (cheat)	4b (opt)
expected events (\# of MC samples)	80	(50000)	73100000	59350
(75000000)	293600			
(1000000)	(1000000)			
pre-selection	46.64	55836	4172	70851
	(29152)	(57287)	(70292)	(241318)
W (cheat) filter	38.58	4.873	98.84	1331
	(24115)	(5)	(1667)	(4535)
4b (opt) filter	35.56	3.899	41.78	3.817
	(22223)	(4)	(704)	(13)
Z (cheat) filter	33.26	$\mathbf{1 . 9 4 9}$	$\mathbf{5 . 0 4 5}$	$\mathbf{3 . 8 1 7}$
	$\mathbf{(2 0 7 8 7)}$	$\mathbf{(2)}$	$\mathbf{(8 5)}$	$\mathbf{1 3})$

$$
\text { significance }=\frac{33.26}{\sqrt{33.26+1.949+5.045+3.817}}=5.01
$$

Cut summary

perfect jet clustering \& 4b (pessimistic)

	signal (cheat)	WW (cheat)	ZZ (cheat)	4b (pes)
expected events (\# of MC samples)	80 $50000)$	73100000	59350	293600
(75000000)	(1000000)	(1000000)		
pre-selection	46.64	55836	4172	84491
	(29152)	(57287)	(70292)	(287776)
W (cheat) filter	38.58	4.873	98.84	2179
	(24115)	(5)	(1667)	(7422)
4b (pes) filter	34.50	2.924	27.66	2.642
	(21562)	(3)	(466)	(9)
Z (cheat) filter	33.06	$\mathbf{2 . 9 2 4}$	$\mathbf{5 . 9 3 5}$	$\mathbf{2 . 6 4 2}$
	(20662)	$\mathbf{(3)}$	$\mathbf{(1 0 0)}$	$\mathbf{(9)}$

$$
\text { significance }=\frac{33.06}{\sqrt{33.06+2.924+5.935+2.642}}=4.95
$$

