Tomas Lastovicka (Czech Academy of Sciences) Katja Seidel (MPI Munich) Jan Strube (CERN)

FLAVOUR TAGGING AT CLIC

Vertex detector design considerations

- Occupancies in the inner layers vs. single point resolution
 - \rightarrow Field strength
- Number of hits vs. material budget

Barrel occupancies in CLIC_ILD

Direct hits from incoheren pairs, CLIC_ILD

Tracking Detectors at CLIC

CLIC_SID

- Silicon Tracker
- 5 layers pixel
- 5 layers strips

CLIC_ILD

- 3 double layers pixel
- TPC + silicon envelope

The Vertex Detectors

Table 4.1: Main parameters of the CLIC_ILD and CLIC_SiD vertex region layouts.

	CLIC_ILD	CLIC_SiD
Central beam pipe	Beryllium	
	$R_i = 29.4 \text{ mm}$	$R_i = 24.5 \text{ mm}$
	d = 0.6 mm	d = 0.5 mm
Barrel region	3 double layers	5 single layers
	z < 130 mm	z < 98.5 mm
	$R_i = 31, 44, 58 \text{ mm}$	$R_i = 27, 38, 51, 64, 77 \text{ mm}$
Forward region	3 double layers	7 single layers
	z = 160, 207, 255 mm	z = 120, 160, 200, 240,
		280, 500, 830 mm
Sensors	20 μm × 20 μm, σ_{sp} \approx 3 μm	
	$X/X_0 = 0.18\%$	$X/X_0 = 0.11\%$
	per double layer	per single layer
Surface area	0.736 m ²	1.103 m ²
Number of channels	$1.84 imes10^9$	$2.76 imes 10^9$

For 500 GeV, lower background rates allowed to move inner pixel layer to 25 mm

830 869 894

32 31 30

130

Flavour Tagging

- LCFI package:
- ZVTOP topological vertex finder
- Jet-based tagging
 - p_T corrected mass
 - Impact parameter resolution
- Some neural network implementation for the tagging
 - 16 input variables per jet

The Algorithm – ZvTop D. Jackson, NIM A388:247-253, 1997

- Topological Vertex Finding
- Looks for overlap of Track probabilities in the Jet
- Resolves ambiguities with a resolution criterion
- Tracks are fitted to the point of highest overlap

Tracks are assigned Gaussian Tubes

The maximum overlap is calculated

Correcting the vertex mass for neutral particles

4.0

2.0

PT-corrected mass (GeV)

0.4

1.0

1.5

$$m_{p_T} = \sqrt{\left(\sum_{\text{tracks}} m_{\pi}\right)^2 + \left|p_T\right|^2} + \left|p_T\right|$$

- The P_T-corrected Mass already by itself gives quite reasonable discrimination
- But one can see the contamination of B events in the D sample

Primary vertex resolution (CLIC_SID)

- LCFI doesn't use a primary vertex fit
 - But easier to get resolution, because of known position
- Use existing vertex fitter for primary vertex reconstruction
- Fit all tracks (modulo track quality) in the event to a common vertex

x-y view of primary vertices with more than 20 tracks

Detector layout cross-check post-CDR very preliminary

Use the 500 GeV ttbar events w/ different reco

- Simulated and reconstructed w/ background
- Production (Si layers only for IP resolution)
- Full tracking for IP resolution
- Change rphi resolution parameter
- Simulate and reconstruct them in the CLIC_ILD (3TeV) detector

Use existing ttbar flavour tag nets for the analyses of the samples

Primary vertex resolutions

- Clear difference between primary vertex resolution for 3 TeV detector and 500 GeV detectors
- Little difference between the different tracking options in the same detector

B-tagging performance

- Different geometries lead to different btagging performance
- Good crosscheck of physicsdriven requirements for layout choices

Flavour Tagging in the CDR

Light Higgs decays to bottom and charm

- Mean energy of Jets 130 GeV
- Using FastNN for training
- Additional track-based variables used in additional step
- b and c(!) tagging

Heavy Higgs

- 30% of secondary tracks from beyond innermost vtx layer
- 20-30% of energetic b jets and 90 % of light quark jets have no secondary vertex

TMVA for training of the networks Augmented with trackbased variables

Top pairs at 500 GeV

- 6 jets, Anti-k_t,
 R=1.3
- Standard
 variables as
 defined by
 default LCFI

TMVA for training

Lessons Learned during the CDR exercise

Evaluation of flavour tagging performance

- For simple topologies: can use "MC truth"
- For complex final states:
 - Training on simple topologies no good
 - Truth matching needed for training
 - H \rightarrow bb: 5% inefficiency
 - Neutralinos decaying to Higgs: 20% inefficiency
 - Top pairs @ 500 GeV: 40% inefficiency
- signal and background in complex final states need to be carefully defined
- Truth matching inefficiencies lead to reduced number of events available for training

Preservation of expertise

- 3 very different physics analyses in the CDR
- 3 different levels of expertise
- 2 experts augmented the existing functionality, 1 used more or less default settings

→ Some lessons learned might be general enough to be fed back

Summary

- LCFI flavour tagging package was used successfully for b-tagging in CLIC CDR benchmarking studies
- The performance of the package for individual analyses is sufficient
- For large-scale studies and comparison, it would be desirable to contain the beginning fragmentation
- Options to involve a more direct feedback from LCFI for physics studies should be investigated