

CLIC Detector and Physics

Mark Thomson University of Cambridge

on behalf of CLIC Physics and Detector Study

This Talk:

- Introduction: CLIC CDR
- CLIC Machine Environment
- CLIC Detector Concepts
- Background and Timing
- Physics Benchmark Studies
- Conclusions

Introduction: CLIC CDR

- **★** CLIC provides the potential for e^+e^- collisions up to $\sqrt{s} = 3$ TeV
 - But machine environment is much more challenging than ILC
 - Detailed studies of physics in this environment described in CLIC CDR
- **★** Draft of CLIC CDR Volume 2 "Physics and Detectors" now available
 - Will be reviewed by a panel of experts in October (chair: Soldner-Rembold)
 - https://edms.cern.ch/document/1160419
- ★ Main points covered in "Physics and Detectors" Volume
 - Physics case
 - Interplay between machine and detector
 - Detector concepts for CLIC
 - based on the ILC detector concepts: ILD and SiD
 - Related sub-detector design and R&D
 - Physics benchmarks

Introduction cont.

★ Assumptions

- CLIC will be a staged in energy
 - Initial energy could be at around $\sqrt{s} = 0.5 \text{ TeV}$
 - Ultimate energy of \sqrt{s} = 3.0 TeV
- Integrated luminosity of 2 ab⁻¹ in four year run at 3 TeV

★ CDR Studies

- Majority performed at \sqrt{s} = 3.0 TeV
 - worst case for beamsstrahlung and backgrounds
- Majority based on full Geant 4 detector simulations including background
 - essential to demonstrate conclusively the physics capability

★ Main goals of CDR

- Demonstrate physics capability in CLIC machine environment
- Understand detector requirements
- **★** CDR would not have been possible without close collaboration with:
 - ILC detector concepts
 - ILC software experts
 - R&D Collaborations

Machine Environment

Mark Thomson

4

CLIC Machine Environment

	CLIC 0.5 TeV	CLIC 3 TeV
L [cm ⁻² s ⁻¹]	2.3×10 ³⁴	5.9×10 ³⁴
BX/train	354	312
BX sep	0.5 ns	0.5 ns
Rep. rate	50 Hz	50 Hz
L/ BX [cm⁻²]	1.1×10 ³⁰	3.8×10 ³⁰
γγ→X / BX	0.2	3.2
σ_x / σ_v	202 / 2 nm	40 / 1 nm

- **★** Beam related background:
 - Small beam profile at IP leads very high E-field;
 - Beamsstrahlung
 - Pair-background
 - Effects much more pronounced at CLIC
- **★** Bunch train structure:
 - CLIC: BX separation 0.5 ns
 - Integrate over multiple BXs of $\gamma\gamma \rightarrow$ hadrons
 - 19 TeV visible energy per 156 ns bunch train

Beamsstrahlung

- ★ Radiation of photons in the strong EM field of the beams results in a distribution of centre-of-mass energies, the luminosity spectrum
 - Large effect at CLIC due to small beam size, $\sqrt{s'}$ > 99 % \sqrt{s}
 - 62 % at 500 GeV
 - 35 % at 3 TeV

*****Impact on physics – depends on final state

- Reduces effective luminosity at highest centre-of-mass energy
 - not so important for processes well above threshold
- When above threshold, system can be boosted along beam axis
 - can distort kinematic edges, e.g. in SUSY searches

Backgrounds

★ Large backgrounds from interactions of real (Beamstrahlung) and virtual photons

- Coherent e⁺e⁻ pairs (real) and "trident" pairs (virtual)
 - 7 x 10⁸ per bunch crossing (BX) at 3 TeV
 - but mainly collinear with beams impacts design of forward region
- Incoherent e⁺e⁻ pairs
 - 3 x 10⁵ per BX (mostly low p_T)
 - impact design of low angle tracking/beam pipe
- $\gamma\gamma \rightarrow$ hadrons (real and virtual) "pile-up of mini-jet events"
 - only 3.2 per bunch crossing
 - main background in central tracker/calorimeters

CLIC Detector Concepts

Mark Thomson

CLIC Detector Concepts

- ★ Detector requirements for CLIC
 - All those for the ILC + timing
 - Optimised for CLIC backgrounds
- ★ Starting point
 - Validated Lol detectors: ILD and SiD
 - High granularity calorimetry for:
 - jet energy resolution
 - improved background rejection

★ Main modifications

- Location of vertex detector/beam pipe to account for increased backgrounds
- Forward region due to background and location of QD0
- Increased HCAL depth to contain showers
 - Jet energy resolution studies

7.5 λ_ι HCAL

• To maintain reasonable solenoid radius assume Tungsten as absorber in barrel

Impact of Background

- **★** Core of incoherent pair background determines:
 - Iocation of vertex detector; forward tracking discs; design of beam pipe...

- Pair background mostly at low radii
 Inner radius of barrel vertex detector
 - CLIC_ILD: 31 mm
 - CLIC_SiD: 27 mm

***** Maximum occupancy

1.9 % per bunch train

(assumes 20 μm pixels and safety factor 5)

CLIC_ILD and CLIC_SiD

★ For studies define two GEANT 4 detector models: CLIC_ILD and CLIC_SiD

	CLIC_ILD	CLIC_SID
Tracker	TPC, r = 1.8 m	Silicon, r = 1.2 m
B-field	4 T	5 T
ECAL	SiW	SiW
HCAL barrel	W-Scint	W-Scint
HCAL endcap	Steel-Scint	Steel-Scint

- Detailed GEANT 4 models
 Full reconstruction with background
 Very similar performance at CLIC energies
 Used interchangeably in physics studies
- ★ Used interchangeably in physics studies

Underlying Detector Performance

★ Underlying performance of detectors meet requirements, e.g. CLIC_SiD

Mark Thomson

LCWS 2011, Granada

Background from γγ→ hadrons and Timing Requirements

Background from γγ→ hadrons

- ★ Pair Background largely affects very low angle region
- **★** Background in calorimeters, central tracker dominated by $\gamma\gamma \rightarrow$ hadrons "mini-jets"
- * At 3 TeV, average 3.2 events per BX (approximately 5 tracks per event)
- ★ For entire bunch-train (312 BXs)
 - 5000 tracks (mean momentum 1.5 GeV) giving total track momentum : 7.3 TeV
 - Total calorimetric energy (ECAL + HCAL) : 19 TeV
- ★ Largely low p_T particles

Backgrounds in the Calorimeters

★ Calorimeter backgrounds per bunch-train (3 TeV)

Detector	γγ→ hadrons
ECAL endcaps	11 TeV
ECAL barrel	1.5 TeV
HCAL endcaps	6 TeV
HCAL barrel	0.3 TeV
Total	19 TeV

★ Calorimeter backgrounds per bunch-crossing are manageable, ~ 60 GeV
 ★ Want to integrate over as few as possible BXs

***** Tight timing requirements !

0.5 ns

Calorimeter Timing

- **★** But can't make calorimeter time window arbitrarily short...
- Time needed to accumulate all calorimetric energy (due to low energy particles, nuclear break-up etc.) significant compared to 0.5 ns Bx
 HCAL resolution depends on time window

CLIC Timing cont.

★ Tension between calorimeter integration time and desire to minimize number of BXs of γγ → hadrons background
 ■ e.g. reconstructed di-jet mass in e⁺e⁻ → H⁰A⁰ → bbbb

CLIC Timing Strategy

- Based on trigger-free readout of detector hits all with time-stamps
 assume multi-hit capability of 5 hits per bunch train
- **★** Assume can identify t0 of physics event in offline trigger/event filter
 - define "reconstruction" window around t0

★ Hits within window passed to track and particle flow reconstruction

Subdetector	Reco Window	Hit Resolution
ECAL	10 ns	1 ns
HCAL Endcap	10 ns	1 ns
HCAL Barrel	100 ns	1 ns
Silicon Detectors	10 ns	10/√12
TPC (CLIC_ILD)	Entire train	n/a

★ Still 1.2 TeV reconstructed background per event

Mark Thomson

LCWS 2011, Granada

Jet Finding at CLIC

★ At LEP, preferred jet-finding algorithm: Durham k_T
 all particles in event clustered into the jets

not appropriate for CLIC

★ Events at CLIC

- significant background from forward-peaked $\gamma\gamma \rightarrow$ hadrons
- are often boosted along beam axis (beamsstrahlung)
- "hadron collider" type algorithms more appropriate

★ Jet finding at CLIC

- studied for benchmark physics analyses (FASTJET package)
- preferred option "k_T" with distance measure $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$
 - invariant under longitudinal boosts
- particles either combined with existing jet or beam axis
 - reduces sensitivity to $\gamma\gamma \rightarrow$ hadrons

Jet Finding at CLIC ★ e.g. $e^+e^- \rightarrow \tilde{q}_R\tilde{q}_R \rightarrow q\bar{q}\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0$ TIGHT two jets + missing energy timing All particles clustered >₀ 90100 "hadron collider" k_{T} with $\Delta R=0.7$ Durham k_T No Cut Entries / 30 Loose Cut 80 Default Cut **Tight Cut** 60 40 40 20 20 0 1000 2000 3000 4000 () 1000 2000 3000 4000 0 E_{vis} [GeV] E_{vis} [GeV]

★ Two "weapons" against background: timing cuts + jet finding

CLIC Benchmarks

Mark Thomson

CLIC Benchmarks

- Detector performance in presence of background demonstrated in CLIC benchmark analyses (+ studies at single physics object level)
- **★** Benchmarks chosen to demonstrate aspects of detector performance
 - Light Higgs (120 GeV)
 - Two SUGRA SUSY points with non-unified gaugino masses
 - chosen to emphasise detector performance

- * All studies use full simulation, full reconstruction and include background from $\gamma\gamma \rightarrow$ hadrons
- Some studies use CLIC_ILD others use CLIC_SID

Slepton Production

- ★ Slepton production at CLIC very clean
- ★ Use SUSY model II: slepton masses ~ 1 TeV
- Channels studied include

•
$$e^+e^- \rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$$

• $e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$
• $e^+e^- \rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_2$

★ Masses from analysis of endpoints of energy spectra

$e^+e^- \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow q \overline{q} \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$ **★** Light flavour squarks tend to be heaviest SUSY particles • study in context of model-I : $m_{\tilde{q}_R} = 1.123 \text{ TeV}$

Closest Template

Measurement (BG subtr.)

Template m = 1130.9 GeV

- simple topology: two high energy jets + missing energy
- mass reconstructed from "edge" of "mass" distribution

GeV

/ 20

100

80

$$M_C = (2E_1E_2 + \mathbf{p}_1 \cdot \mathbf{p}_2)^{1/2}$$

★ Main issue is large SM background

without BDT cut

- Signal

ττνν

- qqev

qqvv

reduced using multivariate analysis: BDT

Squark Production

Heavy Higgs

 $e^+e^- \rightarrow H^0A^0 \rightarrow b\bar{b}b\bar{b}$

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t}$

SUSY (and in general 2HDMs) give heavy Higgs states (900 GeV in model I)
 Analysis:

- force events into four jets (the top quarks highly boosted)
- use b-tagging, kinematic fits, top-tagging (jet structure)
- Heavy Higgs mass from di-jet mass distribution
- tests: b-tagging and jet energy res. for high mass states

LCWS 2011, Granada

Gaugino Pair Production

- **★** Test of particle flow reconstruction of boosted low mass (EW scale) states • SUSY model II : $m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$ $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$
- **★** Pair production and decay: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^$ $e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2 \rightarrow hh \tilde{\chi}^0_1 \tilde{\chi}^0_1$ 82 % $e^+e^- \rightarrow \tilde{\chi}^0_2 \, \tilde{\chi}^0_2 \rightarrow Zh \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$ 17 %
- Largest decay BR has same topology for all final states

Gaugino Pair Production cont.

★ Significant SM background

- Multivariate Chargino and Neutralino event selections (BDT)
 - Invariant mass plays a central role in selections
- Chargino/Neutralino masses extracted from di-jet energy distributions

Higgs Decay

 Light Higgs production has very large WW fusion cross section at 3 TeV: 420 fb

0.5

0.4

0.6

0.7

0.8

0.9

b-tag efficiency

- Branching ratio analysis sensitive to: flavour tagging di-jet mass resolution
 Does flavour-tagging survive background ?

 some degradation
 but b-tag performance still v. good
 - c-tagging also possible

h \rightarrow **cc**, **bb**, $\mu\mu$

$$\frac{10^{6}}{10^{6}} \frac{10^{6}}{10^{6}} \frac{10^{6}}$$

*NOTE: does not yet use tagging of forward electrons – will improve

10⁶ די

Top mass at 500 GeV

- **★** Study top production at $\sqrt{s} = 500$ GeV under CLIC background conditions
 - fully hadronic $t\overline{t} \to (bq\overline{q})(\overline{b}q\overline{q})$ and semi-leptonic $t\overline{t} \to (bq\overline{q})(\overline{b}\ell\nu)$
 - complex analysis, e.g. jet combinatorics

Benchmark Summary

★ Wide range of channels studied

- Excellent physics performance achieved in all
- Both CLIC_ILD and CLIC_SiD concepts are viable options
- For details refer to CDR and the detailed LCD-Notes

Conclusions

- **★** Understanding of Detectors at CLIC has made great progress
 - Have demonstrated precision physics in CLIC environment
 - Defined detector requirements which will guide future R&D
- **★** Frozen draft version of CDR available
 - <u>https://edms.cern.ch/document/1160419</u>
 - please read
 - if you wish to support the CLIC physics case, you are invited to sign-up !

https://indico.cern.ch/conferenceDisplay.py?confld=136364

Related talks at LCWS

Speaker	Title	Session Code	Date/Time
Jan Strube	Analyses of light Higgs decays for the CLIC CDR	R&D1	27 th Sep. at 12h20
Marco Battaglia	Study of Heavy Higgs Bosons in 3 TeV e+e- Collisions	R&D1	27 th Sep. at 12h00
Jean-Jacques Blaising	Determination of Heavy Slepton Mass at CLIC	R&D2	27 th Sep. at 15h36
Frank Simon	Mass and Cross Section Measurements of light-flavored Squarks at CLIC	R&D2	27 th Sep. at 15h00
Philipp Roloff	Measurement of Chargino and Neutralino production at CLIC	R&D2	28 th Sep. at 15h54
Katja Seidel	Top mass measurement with the CLIC_ILD detector at 500 GeV	R&D3	27 th Sep. at 12h00
John Marshall	Lepton Identification at CLIC	R&D5	29 th Sep. at 11h00
Jan Strube	Flavour tagging at CLIC	R&D5	28 th Sep. at 15h40
Astrid Munnich	Particle Flow Performance at CLIC	R&D5	29 th Sep. at 11h20
Stephane Poss	Monte Carlo production for the CLIC CDR	R&D5	27 th Sep. at 17h00
Andre Sailer	Radiation Levels and Occupancies	R&D5 + R&D6	28 th Sep. at 08h30
Katja Seidel	Machine background suppression at CLIC	R&D5 + R&D6	28 th Sep. at 09h30
Mark Thomson	Muon background mitigation	R&D5 + R&D6	28 th Sep. at 09h50

Mark Thomson

Related talks cont.

Speaker	Title	Session Code	Date/Time
Andrea Gaddi	Main solenoid progress	R&D6 + AWG5	27 th Sep at 13h00
Fernando Duarte Ramos	Passive Isolation R&D	R&D6 + AWG5 + AWG8	29 th Sep. at 12h20
Maciej Herdzina	Detector movements on CLIC cavern	R&D6 + AWG5 + AWG8	29 th Sep. at 11h00
Juan Trenado	Background Studies for Vertex and Forward Tracking Optimisation	R&D7	27 th Sep. at 11h20
Bill Cooper	CLIC Vertex Detector Mechanics	R&D7	29 th Sep. at 08h50
Michael Hauschild	Tracking performance in CLIC_ILD and CLIC_SiD	R&D7	27 th Sep. at 16h00
Shaojun Lu	Operation and Calibration of the CALICE Tungsten HCAL	R&D8	28 th Sep. at 15h00
Frank Simon	CALICE T3B: Measurements of the Time Structure of Hadronic Showers in a Scintillator-Tungsten HCAL	R&D8	28 th Sep. at 15h20

Conclusions

- **★** Understanding of Detectors at CLIC has made great progress
 - Have demonstrated precision physics in CLIC environment
 - Defined detector requirements which will guide future R&D
- **★** Frozen draft version of CDR available
 - <u>https://edms.cern.ch/document/1160419</u>
 - please read
 - if you wish to support the CLIC physics case, you are invited to sign-up !

https://indico.cern.ch/conferenceDisplay.py?confld=136364

Back-up Slides

Mark Thomson

Backup Calorimeter Occupancies

Backup: Benchmark Summary

2	Process	Decay mode	SUSY	Observable	Unit	Gene-	Stat.
ŝ			model			rator value	uncert- ainty
	Light Higgs production	$h \rightarrow b\overline{b}$ $h \rightarrow c\overline{c}$ $h \rightarrow \mu^+\mu^-$		σ × Bran- ching ratio	æ	285 13 0.12	0.22% 3.2% 23%
		HA L HENE	-	Mass Width	S S S S S	902.4	0.3% 31%
	Heavy Higgs		=	Mass Width	S S S	742.0	0.2% 17%
	production	н+н- Тийи	-	Mass Width	GeV GeV	906.3	0.3% 27%
			Ħ	Mass Width	GeV GeV	747.6	0.3% 23%
	Production of right-handed squarks	$\widetilde{q}_R\widetilde{q}_R \to q \overline{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	-	Mass o	₽ GeV	1123.7 1.47	0.52% 4.6%
		$\widetilde{\mu}^+_R \widetilde{\mu}^R \rightarrow \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\sigma_{\tilde{\ell}}^{0}$ mass $\tilde{\chi}_{1}^{0}$ mass	₿ GeV GeV	0.72 1010.8 340.3	2.8% 0.6% 1.9%
~	Sleptons production	$\widetilde{e}_R^{+\widetilde{c}-} e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	=	$\sigma \\ \tilde{\ell} \max_{1}^{0} \max$	e Soo	6.05 1010.8 340.3	0.8% 0.3% 1.0%
		$ \begin{array}{c} \widetilde{e}_{L}^{+}\widetilde{e}_{L}^{-} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}hh \\ \widetilde{e}_{L}^{+}\widetilde{e}_{L}^{-} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}Z^{0}Z^{0} \end{array} $	-	a	æ	3.07	7.2%
		$\widetilde{v}_e\widetilde{v}_e \rightarrow \widetilde{\chi}_i^0\widetilde{\chi}_i^0e^+e^-W^+W^-$	-	$\sigma \ { ilde \ell} \ { ilde \ell} \ { ilde \lambda}_1^\pm \ { ilde mass}$	GeV GeV	13.74 1097.2 643.2	2.4% 0.4% 0.6%
	Chargino and	$\tilde{\chi}_1^+\tilde{\chi}_1^-\to \tilde{\chi}_1^0\tilde{\chi}_1^0W^+W^-$	=	${\tilde \chi}_1^\pm$ mass σ	₽ GeV	643.2 10.6	1.1% 2.4%
	neutralino production	$\tilde{\chi}_2^0 \tilde{\chi}_2^0 \to h^0/Z^0 h^0/Z^0 \tilde{\chi}_1^0 \tilde{\chi}_1^0$:	$\tilde{\chi}^0_2$ mass σ	₿ GeV	643.1 3.3	1.5% 3.2%
	if moduction	$t\bar{t} \rightarrow (q\bar{q}b)(q\bar{q}b)$		Mass Width	S S S S S	174 1.37	0.046% 16%
		$\begin{split} t \tilde{t} &\rightarrow (q \overline{q} b) \left(\ell \nu b \right), \\ \ell &= c, \mu \end{split}$		Mass Width	Sev S	174 1.37	0.052% 18%

Mark Thomson

LCWS 2011, Granada

Backup: Impact of Background

- **★** Incoherent pair background also impacts:
 - location of forward tracking discs
 - design of beam pipe
 - design of forward region
- ★ Direct pairs shielded by thick (mm) steel conical (10 mrad) beampipe
- Backscattered pair background reduced by 10cm layer of graphite in front of low angle beam calorimeter
 - Optimised to reduce back-scattered background in tracking volume

Backup: Forward WW

No background

Mark Thomson

LCWS 2011, Granada

Backup: CLIC Detector Requirements

