Top mass measurement with the CLIC_ILD detector at 500 GeV

Stephane Poss¹, Frank Simon^{2,3}, <u>Katja Seidel^{2,3}</u>

¹CERN, Geneva, Swizerland ²MPI for Physics, Munich, Germany ³Excellence Cluster 'Universe', Munich, Germany

> LCWS 2011 Granada, 26.-30.09.2011

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Ta+ Ay>it

Outline

- CLIC Introduction
 - Machine and Detector
 - CLIC background conditions
 - Event simulation and reconstruction
- Analysis Chain
 - Decay channel selection
 - Event topology reconstruction
 - Physical Background rejection
- Final results for CLIC CDR
- Summary

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

CLIC and CLIC_ILD

Machine:

- e+e- machine
- design $\sqrt{s} = 3 \text{ TeV}$
- different energies possible
- staged construction

Detector:

- Here: CLIC_ILD
- Optimized for Particle Flow
 - excellent tracking detectors
 - high granular calorimeter
 - time stamping capability
- See talk by M.Thomson (LCWS Plenary, Monday 17:35)

test SM and LHC results with high precision search for physics beyond SM / LHC

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Top physics at CLIC

d

- Staged construction mode possible: 500 GeV
- Analysis part of the CLIC conceptual design report
- Analysis: Top mass measurement from top pair production
 - full-hadronic channel

e

Conditions at CLIC

The bunch structure at CLIC

- 0.5 ns bunch spacing
- 312 bunches per train

Beamstrahlung driven by energy and focusing **For 500 GeV:**

- mean bunch:
 - ΔE/E ~ 7%
- coherent e⁺e⁻ pairs:
 - 2.0×10^2 / bunch crossing
- incoherent e⁺e⁻ pairs:
 - 8.0 x 10^4 / bunch crossing
 - $\gamma\gamma \rightarrow$ hadrons interactions:
 - 0.2 / bunch crossing

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

CLIC Event Reconstruction

CLIC event:

Integration over a full bunch train

• 312 bunches

Reconstruction challenge:

Suppress pile up from $\gamma\gamma \rightarrow$ hadrons interactions

- adds significant energy to events
- in particular in the forward region
- not in time with the physics event

Reconstruction Technique: Particle Flow

- Pandora Particle Flow event reconstruction based on geometrical hit assignments
- Application of a combination of timing and pt cuts specially for low p_t particles to reject $\gamma\gamma \rightarrow$ hadron background events
- Different strength of cuts are available for 3 TeV and 500GeV center-of-mass energy

Effect of timing and p_t cut strengths

Analysis Chain

 $\sqrt{s} = 500 \,\text{GeV}$

type	$e^+e^- \rightarrow$	cross section σ	number of events
			generated for 100 fb ⁻¹
Signal	tī	550 fb	$5.5 \cdot 10^{4}$
Background	WW	7.1 pb	$7.1 \cdot 10^{5}$
Background	ZZ	410 fb	$4.1 \cdot 10^{4}$
Background	$q\bar{q}$	2.6 pb	$2.6 \cdot 10^{5}$
Background	WWZ	40 fb	$4.0 \cdot 10^{3}$
	· 34	A STATE OF STATE	
	100		

i>+t

Lepton Finder

6 jets

• 4 jets, isolated lepton, neutrino

- > I isolated lepton found
- Events rejected

Jet clustering and Flavor Tagging

- Hadron k_t algorithm
 - Exclusive Mode: Force to 4 or 6 jets
 - Jet algorithm helps to reject background
 - R value defines size of jet, cross checked with distribution of events without machine background

- Flavor tagging based on LCFI Vertex Package
 - Dedicated flavor tagging talk by J. Strube (R&D5, Wednesday, I 5:50)
 - Flavor Tagging is based on a neural net
 - Every jet gets assigned with a b-tag value
 - Jets with highest two b-tag values are chosen to be b-jets

Katja Seidel (MPP)

Jet combinatorics

Full-Hadronic events

- 4 light-jets
- 2 b-jets
- Calculation:

$$m_{ij} - m_W | + |m_{kl} - m_W|$$

 Minimum value defines best permutation

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Kinematic Fit

Jet let Kinematic fit uses constraints from signal event let topology to correct measured properties of decay products • Constraints for four and six jet events: t electron positron • Energy conservation isolated lepton missing energy Momentum conservation lacksquarelet VI • W mass equals 80.4 GeV • Equal top masses let t positron electron let

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Katja Seidel (MPP)

Kinematic Fit

Kinematic fit uses constraints from signal event topology to correct measured properties of decay products

- Constraints for four and six jet events:
 - Energy conservation
 - Momentum conservation
 - W mass equals 80.4 GeV
 - Equal top masses
 - Use kinematic fit for final Wb pairing
 - Only very clean events pass kinematic fit

Kinematic Fit and Background Rejection

Kinematik Fit

- Powerful Background Rejection for qq, WW, ZZ
- Rejection of unwanted signal events: full-leptonic events, tau- events

Binned likelihood rejection

- Seven input variables (Number of particles in event, value of b-tags, sphericity, ...)
- Likelihood cut of 0.6 chosen
- Training with independent sample

Full-Hadronic

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Kinematic Fit and Background Rejection

Kinematik Fit

- Powerful Background Rejection for qq, WW, ZZ
- Rejection of unwanted signal events: full-leptonic events, tau- events

Binned likelihood rejection

- Seven input variables (Number of particles in event, value of b-tags, sphericity, ...)
- Likelihood cut of 0.6 chosen
- Training with independent sample

Overall background rejection: > 99% Overall signal selection: Full-Hadronic: 35% Semi-Leptonic: 56%

- Signal efficiency could be improved
- Analysis goal: clean events not amount of statistic

Excellence Cluster

13

Full-Hadronic

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Fit of final distribution

clc

Un-binned maximum likelihood fit over full range

- Combination of signal and background pdf
- Signal pdf is a convolution of a Breit Wigner and a detector resolution function

Top Mass for 100 fb⁻¹ with CLIC_ILD at 500 GeV

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Summary:

- Low energy version of CLIC also suitable for high precision measurements
 - More details in the CLIC_CDR:

http://lcd.web.cern.ch/LCD/CDR/CDR.html

- Machine background conditions and pile up under control
- Analysis of tt events at 500 GeV with the CLIC_ILD detector for 100 fb⁻¹ gives a statistical error of 80-90 MeV on top mass
- Analysis of top mass for full-hadronic and semi-leptonic decay chain of top pairs
- Result comparable with studies for ILD and SiD for ILC at 500 GeV
- All details about this analysis:

https://edms.cern.ch/document/1158626/1

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

A+Ay>tt

Conditions at CLIC: Beamstrahlung Details

- Coherent e⁺e⁻ pairs with angles < 10 mrad
 - Crossing angle and beam pipe opening at CLIC: 20 mrad
 - Outgoing beam: coherent pairs disappear in beampipe
- Incoherent pairs: reduced by solenoidal field, constrain innermost radius of vertex detector

Conditions at CLIC: Beamstrahlung Details

- $\gamma\gamma \rightarrow$ hadrons: ~ 3.2 events / bx,
 - ~ 28 ch. particles in detector acceptance
 ⇒ 15 TeV in detector during bunch train forward peaked

Requires precise time stamping and clever event reconstruction

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

- Coherent e⁺e⁻ pairs with angles < 10 mrad
 - Crossing angle and beam pipe opening at CLIC: 20 mrad
 - Outgoing beam: coherent pairs disappear in beampipe
- Incoherent pairs: reduced by solenoidal field, constrain innermost radius of vertex detector

CLIC ILD Detector - Main Features

LCWS, Granada, 27.09.2011

Semi-Leptonic decay channel

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Katja Seidel (MPP)

Event topology

Full-Hadronic decay channel

Top mass measurement with CLIC_ILD at 500 GeV LCWS, Granada, 27.09.2011

Katja Seidel (MPP)

