Top Higgs Yukawa Coupling Analysis from $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b$

Hajrah Tabassam Quai-i-Azam University, Islamabad Supervisor: Victoria Martin University of Edinburgh

Contents

- Introduction
- Sample
- Lepton Identification
- Missing Energy reconstruction
- Semi-Leptonic W reconstruction
- Jets Reconstruction
- Full event reconstruction
- Background and Signal Separation
- Coupling Results
- Conclusions/Discussion

Introduction

- Once Higgs is found, its coupling with fermions is interesting to study.
- $g_{ffH} = \frac{m_f}{v}, v$ is vacuum expectation value of Higgs field.
- Top is heaviest fermion, so top-Higgs Yukawa coupling is largest.
- The coupling of top to the Higgs is modified in the SUSY models
- This analysis was not done for LOI
- ILD software framework is used for this analysis

Fig. 1. Lowest order Feynman diagrams of the process $e^+e^- \rightarrow t\bar{t}H$

Samples

- ILD_00 centrally reconstructed sample with center of mass energy √s = 500 GeV.
- $t \bar{t}$ -Higgs events with $M_h = 120 \text{ GeV/c}^2$, $M_t = 175 \text{ GeV/c}^2$.
- Software version used is ILCSoft v01-06.

Process	σ (fb)	Sample	L (ab ⁻¹⁾
$e^+ e^- \rightarrow t \bar{t} H$	0.577 [[] arXiv:hep-ph/ 0604166v2]	20,000	34
$e^+ e^- \rightarrow t \overline{t}$	521	1800000	3.4
$e^+ e^- \rightarrow t t Z$	0.58	24,000	41
$e^+ e^- \rightarrow ZZ$	577.2		
$e^+ e^- \rightarrow W^- W^+$	7890		
$e^+e^- \rightarrow q\overline{q}$	3951.8		

Semi-Leptonic Channel

- $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b$
- Focus on semi-leptonic final state with one W decaying into lepton and neutrino and other W decaying into light jets
- Final state is 1 lepton, missing energy, 6 Jets with 4 b-jets
- Remove the leptons and force remaining particles into 6-jets (JetFinder Algorithm)
- High momentum Lepton and large missing momentum signature

Filtering of Semi-Leptonic Channel for Monte Carlo Sample

- Initially 20,000 MC events with full final state where Higgs and W decay into anything
- Filter events with one lepton (μ, e), and H decaying to bb, 4466 events are left.

Lepton Identification

(From study of Single MC Lepton with P >15 GeV)

- Muon Identification:
- Cut based selection is being used. Efficiency from single Muon sample is 98%.

(1) $E_{Ecal} < 2.5 \text{ GeV}$ (2) $E_{Hcal} < 15 \text{ GeV}$ (3) $E_{Ecal} / E_{Tot} < 0.5$ (4) $E_{tot} / p < 0.3$

• Electron Identification:

 Cut-based selection on single Electron sample has showed that 98.57% electron are identified by using:

e	efficiencies in %	electron cuts	muon cuts
,	е	98.57±0.06	~0
5	μ	0.03±0.01	97.5±0.05
	π	3.88±0.06	0.46±0.003

$W \rightarrow V\ell$ (Lepton Identification) Resolution of Lepton momentum

- we identify our reconstructed leptons (e, μ) using same cut variables as for single lepton case.
- Most of the reconstructed leptons are correctly identified as leptons.
- These lepton tracks are then removed from the PandorPFOs collection.

$W \rightarrow V\ell$ (Missing Momentum)

• Using the information for all reconstructed particles, missing momentum is reconstructed.

$$p_x^{miss} = -\Sigma_i p_{xi}, \quad p_y^{miss} = -\Sigma_i p_{yi}, \quad p_z^{miss} = -\Sigma_i p_{zi}, \qquad p_T^{miss} = \sqrt{(p_x^{miss})^2 + (p_y^{miss})^2}$$

- Z-component of missing energy isn't as accurate as x and y components
- However, z-component can be used to reconstruct Semi-leptonic W mass.

Reconstructed Mass of leptonic *W*

- To reconstruct semi-leptonic W, we select events which have lepton momentum not equal to zero and one lepton with highest momentum
- The momentum of lepton and Missing Momentum are used to reconstruct the mass of W.

$$M_W = \sqrt{(E_\nu + E_l)^2 - (p_{\nu x} + p_{lx})^2 - (p_{\nu y} + p_{ly})^2 - (p_{\nu z} + p_{lz})^2}$$

Jets reconstruction

- Identified leptons are removed from the sample
- remaining particles are forced into 6 Jets using JetFinder algorithm
- Jets pass LCFIVertex reconstruction [<u>arXiv:0908.3019v1</u>]
- LCFI flavour tagging is used to separate light and b-jets
- Jets are sorted in descending order of b-tag value
- top four jets with highest b-tag value are selected as b-jets
- Light jets are used to reconstruct hadronic W

Reconstructed Mass of Hadronic *W*

- Used the light jets (lowest b-tag value jets) momentum to reconstruct W mass (Right figure)
- Wrong particles are picked as light jets
- Make combinations of jets which have b-tag value less than 0.09 and pick the combination which is closest to W mass (81.4 GeV) (Left figure)

Final State Reconstruction

 As we have a good reconstruction of z-component of the missing momentum, it is used to reconstruct the Mass of semi-leptonic W

$$M_W = \sqrt{(E_\nu + E_l)^2 - (p_{\nu x} + p_{lx})^2 - (p_{\nu y} + p_{ly})^2 - (p_{\nu z} + p_{lz})^2}$$

- Four b-jets are used to reconstruct two tops and Higgs particle
- To reduce combinatorial backgrounds, minimisation of χ^2 technique is used

$$\chi^{2} = \frac{(M_{l\nu b} - M_{t})^{2}}{\sigma_{l\nu b}^{2}} + \frac{(M_{jjb} - M_{t})^{2}}{\sigma_{jjb}^{2}} + \frac{(M_{bb} - M_{Higgs})^{2}}{\sigma_{bb}^{2}}$$

Reconstructed Final State

There are 12 entries for each event due to different combinations

Reconstructed Final State after Minimizing χ²

Selection variables (I)

Selection variables (II)

b-tagging ttH vs ttZ

- B-tag of all 6 jets are looked at
- 4 with largest b-tag value are considered as b-jets
- Cut on b-tag values of jet3 and jet4 can reduce a significant number of background events

b-tagging ttH vs tt

- B-tag of all 6 jets are looked at
- 4 with largest b-tag value are considered as b-jets
- Cut on b-tag values of jet3 and jet4 can reduce a significant number of background events

b-tag efficiency (3rd and 4th Jets)

b-tag (both jets)	No of Signal events (S)	No of bkg events (B)	S/√S+B
0	3097	7304	30.36
> 0.08	2410	2371	34.84
> 0.09	2237	1666	35.80
> 0.1	2154	1525	35.51
> 0.15	1708	771	34.30
> 0.2	1429	515	32.41
Btag (3 rd jet) > 0.09 Btag (4 th jets) > 0.08	2406	2282	35.14

Signal and Background separation

Cuts	tTH	t tZ	tt
initial	20000	24000	376276
#Lep > 0	3860 ** After semi-leptonic selection	14536	282404
E_Reco > 325 GeV	3600	8021	68439
P_Lep > 15 GeV	3167	7128	55206
P_miss > 20 GeV	3119	5610	54488
P_Jet >20 GeV	2978	4837	33909
3 rd & 4 th jet b-tag > 0.09	2215	1544	11017
Chisq < 400	2161	1487	1822
M _{Lep} > 40 GeV	2135	1330	1778
TotalM _{Event} > 420 GeV	1871	873	711
100 GeV < M _{bb} < 140 GeV	1513	662	464
Efficiency	7.57	2.76	0.11

Scaled Signal and Background distributions after all selection cuts

Measuring top-Higgs Yukawa coupling (Eur.Phys.J.C 49, 489-497(2007))

- The Yukawa coupling is scaled to the fermion mass: $g_{ffH} = \frac{m_f}{v}$, v is the vacuum expectation value of the Higgs field = 246 GeV
- For selection efficiency of the signal (ε) and purity of the selected sample (ρ), systematic and statistical uncertainties are given by:

$$(\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}})_{stat} \approx \frac{1}{S_{stat}(g_{t\bar{t}H}^2)\sqrt{\epsilon_{signal}^{sel}\rho_{sample}^{sel}L}} \quad (\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}})_{syst} \approx \frac{1}{S_{syst}(g_{t\bar{t}H}^2)} \frac{1-\rho_{sample}^{sel}}{\rho_{sample}^{sel}} \frac{\Delta \sigma_{eff}^{BG}}{\sigma_{eff}^{BG}}$$

- $\Delta\sigma/\sigma$ is the uncertainty in the residual background normalisation mainly from tt pairs. In our case it is 5%.
- The sensitivity factors $S_{stat}(g_{t\bar{t}H}^2) = \frac{1}{\sqrt{\sigma_{t\bar{t}H}}} \left| \frac{d\sigma_{t\bar{t}H}}{d(g_{t\bar{t}H}^2)} \right|$ and $S_{syst}(g_{t\bar{t}H}^2) = \frac{1}{\sigma_{t\bar{t}H}} \left| \frac{d\sigma_{t\bar{t}H}}{d(g_{t\bar{t}H}^2)} \right|$ express dependence of cross section on the coupling square which is inversely proportional to the square of g_{ttH}^2 due to small cross section of

the Higgs radiating off the Z.

Results

• Expected uncertainty on the coupling measurement. We used $S_{stat} = 1.5 \ fb^{1/2}$ and $S_{syst} = 1.98$ with Luminosity $L = 1000 \ fb^{-1}$

Final State	ϵ_{sel} (%)	$\sigma_{eff} \ (\mathrm{fb}^{-1})$
$t\bar{t}H$	7.57 ± 0.19	0.04
$t\overline{t}$	0.11 ± 0.00	0.29
$t\bar{t}Z$	2.76 ± 0.12	0.02

Parameter	value $(\%)$
$rac{\Delta \sigma^{BG}_{eff}}{\sigma^{BG}_{eff}}$	5
ϵ_{sel}	7.6 ± 0.2
$ ho_{sample}^{sel}$	12.5 ± 0.3
$\left(rac{\Delta g_{tar{t}H}}{g_{tar{t}H}} ight)_{stat}$	21.6
$\left(rac{\Delta g_{tar{t}H}}{g_{tar{t}H}} ight)_{syst}$	17.6
$rac{\Delta g_{tar{t}H}}{g_{tar{t}H}}$	27.9

Conclusion/Discussion

- For L = 1000 fb⁻¹, Vs=500 GeV, the measured uncertainty in the top-Higgs-Yukawa coupling is 27.9%
- Improvements in hadronic W reconstruction, can refine the results
- Multivariate can be used to improve the background suppression
- The largest uncertainty is due to the uncertainty $\Delta\sigma/\sigma$ on the background normalisation σ_{tt} , which is taken to be 5%. Updated values of this uncertainty can change the results.
- It will be necessary to extended this study to a higher energy but b-tagging will be needed to be optimised.

Extra slides

Cross section of *t*tH

9/28/11

$W \rightarrow V\ell$ (Transverse Mass)

- It is worth trying to reconstruct the transverse mass of W.
- The transverse momentum of lepton and Missing Momentum are used to reconstruct the transverse mass of W.

$$M_{WT} = \sqrt{2p_T^l p_T^\nu (1 - \cos(\phi^l - \phi^\nu))}$$

Selection variables

Signal and background are arbitrarily normalised Cuts are selected by optimising S/ $\!\sqrt{(S+B)}$

Signal and Background Final State after applying selection cuts

Signal and background are arbitrarily normalised