| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

# **Resummation of large IR logarithms** for the Thrust distribution

Pier Francesco Monni

# In collaboration with T. Gehrmann and G. Luisoni

Institut für Theoretische Physik





| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| •            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Event shapes are *IRC* safe observables which describe the topology of hadronic final states. They enjoy two peculiar features:

• Intuitive physical picture...

• *e.g.* Thrust 
$$T = \max_{\{\vec{n}_T\}} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_i|}$$

### $T \simeq 1$ : two jet event









| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Event shapes are *IRC* safe observables which describe the topology of hadronic final states. They enjoy two peculiar features:

- Intuitive physical picture...
  - Thrust  $T = \max_{\{\vec{n}_T\}} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_i|}$
  - Heavy Jet Mass  $\rho = \frac{1}{Q^2} \max(M_L^2, M_R^2), \qquad M_{L/R}^2 = (\sum_i p_1)^2$

• Broadenings 
$$B_{L/R} = \frac{1}{2} \sum_i |\vec{p}_i \times \vec{n}_T|$$

• total 
$$B_T = B_L + B_R$$

• wide 
$$B_W = \max(B_L, B_R)$$

• C parameter 
$$C = \frac{3}{2} \frac{\sum_{ij} \left( |\vec{p}_i| |\vec{p}_j| - \frac{(\vec{p}_i \cdot \vec{p}_j)^2}{|\vec{p}_i| |\vec{p}_j|} \right)}{(\sum_i |\vec{p}_i|)^2}$$

• Jet resolution parameters (e.g. Durham/Cambridge y<sub>3</sub>,...)

• ...



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Event shapes are *IRC* safe observables which describe the geometry of hadronic final states. They enjoy two peculiar features:

- Intuitive physical picture...
- High sensitivity to QCD properties...

 Precise measurement of the strong coupling α<sub>s</sub> [OPAL collaboration '11]





Granada, Sep 28 2011

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Event shapes are *IRC* safe observables which describe the geometry of hadronic final states. They enjoy two peculiar features:

- Intuitive physical picture...
- High sensitivity to QCD properties...

- Precise measurement of the strong coupling α<sub>s</sub>
- Analysis of hadronisation corrections (~ <sup>1</sup>/<sub>Q</sub>, shape function, dispersive model...)





Granada, Sep 28 2011

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| •0           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- Fixed order predictions for event shape distributions diverge in the dijet limit (*T* → 1)...
  - We compute the probability of real emission constraining the event such that  $\Theta(1-T<\tau)$
  - Dijet limit  $T \simeq 1 \rightarrow$  real gluon radiation forbidden
  - Imbalance between real (*constrained*) and virtual (*unaffected*) radiation leads to large logarithms in the distribution of the event shape
- The perturbative series is **poorly convergent** in the high *T* region due to the presence of terms  $\alpha_s \log(1-T) \simeq 1$
- For a physical prediction to be reliable we need to resum logarithmically enhanced terms

#### Resummation

$$R(y) = 1 + \bar{\alpha}_s \mathscr{A}(y) + \bar{\alpha}_s^2 \mathscr{B}(y) + \bar{\alpha}_s^3 \mathscr{C}(y) + \mathscr{O}(\bar{\alpha}_s^4)$$

| $\bar{\alpha}_{s}\mathscr{A}(y)$  | $\bar{\alpha}_{s}L$  | $\bar{lpha}_s L^2$     |                        |                        |                        |                        |
|-----------------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| $\bar{\alpha}_s^2 \mathscr{B}(y)$ | $\bar{\alpha}_s^2 L$ | $\bar{\alpha}_s^2 L^2$ | $\bar{\alpha}_s^2 L^3$ | $\bar{\alpha}_s^2 L^4$ |                        |                        |
| $\bar{\alpha}_s^3 \mathscr{C}(y)$ | $\bar{\alpha}_s^3 L$ | $\bar{\alpha}_s^3 L^2$ | $\bar{\alpha}_s^3 L^3$ | $\bar{\alpha}_s^3 L^4$ | $\bar{\alpha}_s^3 L^5$ | $\bar{\alpha}_s^3 L^6$ |

# LL, NLL, NNLL, $N^{3}LL$ , ...



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- Fixed order predictions for event shape distributions diverge in the dijet limit (*T* → 1)...
  - We compute the probability of real emission constraining the event such that  $\Theta(1-T<\tau)$
  - Dijet limit  $T \simeq 1 \rightarrow$  real gluon radiation forbidden
  - Imbalance between real (*constrained*) and virtual (*unaffected*) radiation leads to large logarithms in the distribution of the event shape
- The perturbative series is **poorly convergent** in the high *T* region due to the presence of terms  $\alpha_s \log(1-T) \simeq 1$
- For a physical prediction to be reliable we need to resum logarithmically enhanced terms



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- CTTW approach [Catani, Trentadue, Turnock, Webber '93]
  - Based on parton branching algorithm [Catani, Marchesini, Webber '91]
  - Allows for resummation of "soft-collinear"/"hard-collinear" logarithms up to NLL
  - Not yet (fully) extended beyond NLL to include "large-angle" logarithms and hemispheres correlation...(single N<sup>2</sup>LL application: *EEC* [De Florian, Grazzini '04])
  - Results for many standard shape observables : T,  $\rho$ , C,  $B_W$ ,  $B_T$  [Catani et al.'93; Dokshitzer





| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- CTTW approach [Catani, Trentadue, Turnock, Webber '93]
  - Based on parton branching algorithm [Catani, Marchesini, Webber '91]
  - Allows for resummation of "soft-collinear"/"hard-collinear" logarithms up to NLL
  - Not yet (fully) extended beyond NLL to include "large-angle" logarithms and hemispheres correlation...(single N<sup>2</sup>LL application: *EEC* [De Florian, Grazzini '04])
  - Results for many standard shape observables :*T*, *ρ*, *C*, *B<sub>W</sub>*, *B<sub>T</sub>* [Catani et al.'93; Dokshitzer et al. '98]
- Automated NLL resummation in momentum space : Caesar [Salam et al. '04]
  - automated treatment of a wide class of global observables (*e.g.* Durham *y*<sub>3</sub> jet resolution)





| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_S$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- More systematic approaches:
  - "USA" school [Sterman et al.; Korchemsky et al.]
    - factorisation at the Cross Section level
    - RG evolution and resummation in Laplace (Mellin) space
  - SCET school [Becher et al. ; Stewart et al.]
    - factorisation at the Lagrangian level
    - resummation in direct (momentum) space
- Several technical differences (SCET Feynman rules, collinear divergences regulators and soft-collinear subtraction, intermediate scales treatment,...)...but same framework
- They both allow for systematic resummation beyond NLL
  - Matching to NNLO [Gehrmann et al.; Weinzierl] led to
    - T: N<sup>(3\*)</sup>LL+N<sup>2</sup>LO (\* Padé approximants for Γ<sup>(3)</sup><sub>cusp</sub>, fit of the non-logarithmic soft structure) [Becher, Schwartz; Hoang et al. '08]
    - $T : N^2LL + N^2LO$  (+ analytic computation of  $C_2$  and  $G_{3,1}$ ) [PFM, Gehrmann, Luisoni '11]
    - ρ : T : N<sup>(3\*)</sup>LL+N<sup>2</sup>LO (\* Padé approximants for Γ<sup>(3)</sup><sub>cusp</sub>, fit of the non-logarithmic soft structure) [Chien, Schwartz '10]
    - $B_W$ ,  $B_T$ : general factorization is now available [Becher, Neubert, Bell '11]



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

I: factorization of the observable in the dijet region (w/o recoil effects!!)

$$1 - T \simeq \frac{\bar{k}^2}{Q^2} + \frac{k^2}{Q^2} + \frac{\bar{q}\cdot\bar{n}}{Q} + \frac{q\cdot n}{Q} \to \Theta(1 - T < \tau) = \frac{1}{2\pi i} \int_C \frac{dv}{v} e^{v\tau} e^{-\frac{\bar{k}^2}{Q^2}v} e^{-\frac{k^2}{Q^2}v} e^{-\left(\frac{\bar{q}\cdot\bar{n}}{Q} + \frac{q\cdot n}{Q}\right)v}$$

II: factorisation of the cross section ( $v_0 = e^{-\gamma_E}$ ) [Collins et al.; Berger et al.][Fleming et al.; Schwartz]

$$R_T(\tau) = \mathscr{H}(\frac{Q^2}{\mu^2}, \alpha_s(\mu)) \int_C \frac{d\nu}{2\pi i \nu} e^{\nu \tau} \tilde{\mathscr{J}}_n(\frac{\nu_0 Q^2}{\nu \mu^2}, \alpha_s(\mu)) \tilde{\mathscr{J}}_{\bar{n}}(\frac{\nu_0 Q^2}{\nu \mu^2}, \alpha_s(\mu)) \tilde{S}(\frac{\nu_0^2 Q^2}{\nu^2 \mu^2}, \alpha_s(\mu)) + \mathcal{O}(\tau)$$

- single quark leg connecting  $\mathscr{H}$  to  $\mathscr{J}_{L,R}$ 
  - trivial in axial gauge
  - longitudinally polarised gluons are still present in Feynman gauge (decoupled by Ward Identities)
- soft gluons factorise
- graphs involving soft gluon exchange between *S* and *H* are suppressed or cancel





| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- $\tilde{S}(\frac{v_0^2 Q^2}{v^2 \mu^2}, \alpha_s(\mu))$ 
  - In emitting soft gluons, the hard collinear quarks behave as classical relativistic particles → interactions with soft gluons are factorised into eikonal lines
  - Includes both soft and soft-collinear corrections
  - Known at  $\mathscr{O}(\alpha_s^2)$ , [PFM, Gehrmann, Luisoni; Hornig et al.; Kelley et al. '11]





LCWS11

Granada, Sep 28 2011

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

## Computation of the Soft subprocess

$$\tilde{S}(\frac{v_0^2 Q^2}{v^2 \mu^2}, \alpha_s(\mu)) = \frac{1}{N_C} \int d\tau e^{-\nu\tau} \sum_{k_{eik}} \langle 0|\Phi_{\bar{n}}^{\dagger}(0)\Phi_{n}^{\dagger}(0)|k_{eik}\rangle \mathscr{J}_{cut}(\tau) \langle k_{eik}|\Phi_{n}(0)\Phi_{\bar{n}}(0)|0\rangle$$

• two loop *cusp* and *soft* anomalous dimensions:

$$\begin{split} \Gamma_{\text{cusp}}(\alpha_s) &= \frac{\alpha_s}{\pi} C_F + \frac{\alpha_s^2}{\pi^2} C_F \left( C_A \left( \frac{67}{36} - \frac{\pi^2}{12} \right) - \frac{5}{9} T_F n_F \right) + \mathcal{O}(\alpha_s^3) \\ \Gamma_{\text{soft}}(\alpha_s) &= -\frac{\alpha_s^2}{\pi^2} C_F \left( T_F n_F \left( \frac{14}{27} - \frac{\pi^2}{36} \right) + C_A \left( -\frac{101}{54} + \frac{11}{144} \pi^2 + \frac{7}{4} \zeta_3 \right) \right) + \mathcal{O}(\alpha_s^3) \end{split}$$

• non-logarithmic part of the two loop soft subprocess

$$\begin{split} \tilde{S}_{0}^{(2)} &= \frac{\alpha_{s}^{2}(\mu)}{\pi^{2}} \left( \frac{\pi^{4}}{32} C_{F}^{2} + C_{F} T_{F} n_{F} \left( \frac{5}{81} + \frac{77\pi^{2}}{216} - \frac{13\zeta_{3}}{18} \right) + C_{A} C_{F} \left( -\frac{535}{324} - \frac{871\pi^{2}}{864} + \frac{7\pi^{4}}{120} + \frac{143\zeta_{3}}{72} \right) \right) \\ &= \frac{\alpha_{s}^{2}(\mu)}{(4\pi)^{2}} \left( 48.7045 C_{F}^{2} - 56.4989 C_{F} C_{A} + 43.3905 C_{F} T_{F} n_{F} \right) \end{split}$$

- Analytical determination of C<sub>2</sub> and G<sub>3,1</sub>
- Previously fitted using the generator EVENT2 [Becher, Schwartz; Hoang, Kluth; Chien, Schwartz]



Granada, Sep 28 2011

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- $\tilde{S}(\frac{v_0^2 Q^2}{v^2 \mu^2}, \alpha_s(\mu))$ 
  - In emitting soft gluons, the hard collinear quarks behave as classical relativistic particles → interactions with soft gluons are factorised into eikonal lines
  - Includes both soft and soft-collinear corrections
  - Known at  $\mathscr{O}(\alpha_s^2)$ , [PFM, Gehrmann, Luisoni; Hornig et al.; Kelley et al.]
- $\tilde{\mathscr{J}}_n(\frac{v_0 Q^2}{v \mu^2}, \alpha_s(\mu))$ 
  - Describes the decay of a massless quark into a jet of collinear particles moving along the *n* direction (known at  $\mathcal{O}(\alpha_s^2)$ , [Becher, Neubert])
  - Defined as the cut quark propagator in the axial gauge
  - **Caution**: double counting with the soft subprocess and the *n*-collinear jet must be avoided!
    - "non-light-like" Wilson lines + explicit subtraction of soft-collinear contributions
    - SCET Feynman rules + (where necessary) zero bin subtraction
- $\mathscr{H}(\frac{Q^2}{\mu^2}, \alpha_s(\mu))$ 
  - Hard virtual corrections (~  $\delta(1-T)$  → constant contribution at large  $\nu$ )
  - Defined such that

$$\mathscr{H}\mathscr{J}_{n}\otimes\mathscr{J}_{\bar{n}}\otimes S=$$
fixed order + $\mathscr{O}(\tau)$ 



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 0                | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Resummed cross section in Laplace space (from NLL to  $N^2LL$ ):

$$R_{T}(\tau) = \mathscr{H}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu)\right) \int_{C} \frac{dv}{2\pi i v} e^{v\tau} \mathscr{J}^{2}(1, \alpha_{s}(\sqrt{\frac{v_{0}}{v}}Q)) \widetilde{S}(1, \alpha_{s}(\frac{v_{0}Q}{v}))$$
$$\times \exp\left\{-2\int_{\frac{v_{0}}{v}}^{1} \frac{du}{u} \left(\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dk^{2}}{k^{2}} \mathscr{A}(\alpha_{s}(k^{2})) + \mathscr{B}(\alpha_{s}(uQ^{2}))\right)\right\} + \mathscr{O}(\tau)$$

• 
$$\mathscr{A}(\alpha_s) = \Gamma_{\text{cusp}}(\alpha_s) - \beta(\alpha_s) \frac{\partial \Gamma_{\text{soft}}(\alpha_s)}{\partial \alpha_s} = \sum_{k \ge 1} A^{(k)} \left(\frac{\alpha_s}{\pi}\right)^k \qquad \mathscr{B}(\alpha_s) = \Gamma_{\text{soft}}(\alpha_s) + \Gamma_{\text{coll}}(\alpha_s) = \sum_{k \ge 1} B^{(k)} \left(\frac{\alpha_s}{\pi}\right)^k$$

- Altarelli-Parisi splitting function  $P_{qq}(\alpha_s, z) = 2 \frac{\Gamma_{\text{cusp}}(\alpha_s)}{(1-z)_+} + 2\mathscr{B}(\alpha_s)\delta(1-z) + \dots$ , [Korchemsky] (known at  $\mathscr{O}(\alpha_s^3)$ , [Vogt, Vermaseren, Moch])
- Beyond NLL:
  - Large angle soft emission
  - Interplay between Logarithms and Constants (breakdown of exponentiation)



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

Resummed cross section in Thrust space (from NLL to  $N^2LL$ ):

$$R_{T}(\tau) = \left(1 + \sum_{k=1}^{3} C_{k}\left(\frac{\alpha_{s}}{2\pi}\right)^{k}\right) e^{\mathscr{F}(\alpha_{s}(\mathcal{Q}^{2}),\log\frac{1}{4})} \frac{1}{\Gamma(1-\gamma(\lambda))} \left[1 + \frac{\alpha_{s}}{\pi} \beta_{0} f_{2}'(\lambda) \psi^{(0)}(1-\gamma(\lambda)) + \frac{1}{2} \frac{\alpha_{s}}{\pi} \beta_{0} \gamma'(\lambda) \Gamma(1-\gamma(\lambda)) \frac{d^{2}}{d\gamma^{2}(\lambda)} \frac{1}{\Gamma(1-\gamma(\lambda))} + \frac{\alpha_{s}}{\pi} C_{F}\left(\gamma_{E}\left(\frac{3}{2} - \gamma_{E}\right) - \frac{\pi^{2}}{6}\right)\right] + \mathscr{O}(\tau)$$

$$\begin{aligned} & \mathscr{F}(\alpha_s(Q^2),L) = Lf_1(\frac{\alpha_s}{\pi}\beta_0L) + f_2(\frac{\alpha_s}{\pi}\beta_0L) + \frac{\alpha_s}{\pi}\beta_0f_3(\frac{\alpha_s}{\pi}\beta_0L) + G_{3,1}\frac{\alpha_s^3}{(2\pi)^3}L + \mathscr{O}(\alpha_s^4L^2) \\ & \gamma(\lambda) = f_1(\lambda) + \lambda f_1'(\lambda), \qquad \lambda = \frac{\alpha_s}{\pi}\beta_0\log\frac{1}{\tau} \end{aligned}$$

- $C_2, f_3$  and  $G_{3,1}$  analytically known!
- The presence of the Landau pole does not affect the inversion of the Laplace transform and it is directly mapped onto the Thrust space
- Numerical agreement with SCET based result after proper treatment of their formula (exponentiation of constants, subleading terms...)



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | •                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- We compare two different matching schemes (R vs Log(R))
- The former requires the  $\mathcal{O}(\alpha_s^3)$  constant term  $C_3$





| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | •                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

- comparison to NLL+N<sup>2</sup>LO [Gehrmann, Luisoni, Stenzel]
- renormalization scale dependence reduces from  $\sim 6\%$  to  $\sim 4\%$
- resummation scale dependence reduces from  $\sim 7.2\%$  to  $\sim 2.7\%$  in the peak region
- better description of the 3 jets region
- multi-jet region dominated by fixed order prediction

0.1



(1-T) 1/σ dσ/d T

0.5

0.4

0.3

0.2

0.1

0

0

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | •                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

### Dispersive Model, [Dokshitzer et al. '96]

- Assume integrable α<sub>s</sub> at low Q (existence of an effective coupling α<sub>s</sub><sup>eff</sup>)
- Subtraction of renormalon ambiguity
- The leading correction amounts to a shift...

$$\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y} \to \frac{\mathrm{d}\sigma(y-a_y\mathbf{P})}{\mathrm{d}y}$$
$$\alpha_0(\mu_l) = \frac{1}{\mu_l} \int_0^{\mu_l} \alpha_s^{\mathrm{eff}}(k) \mathrm{d}k$$

$$\begin{split} \mathbf{P} &= \frac{4\mathbf{C}_{\mathrm{F}}}{\pi^2} \mathscr{M} \frac{\mu_I}{\mathcal{Q}} \left\{ \alpha_0(\mu_I) - \left[ \alpha_s(\mu_R) + \alpha_s^2(\mu_R) \right. \\ & \times \frac{\beta_0}{\pi} \left( \log \frac{\mu_R}{\mu_I} + 1 + \frac{K}{2\beta_0} \right) + \mathscr{O}(\alpha_s^3) \right] \right\} \end{split}$$

 $\mathcal{M} = 1.49 \pm 0.29$  (effect of the interplay between PT & PC) [Dokshitzer, Lucenti, Marchesini, Salam '00]







| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slide |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|---------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |               |
| 000          |                       | 0                | •                 |                                                 |                         |               |
| 00           |                       | 0                | 0                 |                                                 |                         |               |
| 000          |                       |                  |                   |                                                 |                         |               |

• T: NNLO+NLL+ $\frac{1}{Q}$  global fit 14 GeV  $\leq Q \leq 207$  GeV

[Davison, Webber '08]

 $\begin{aligned} \alpha_s(M_Z) &= 0.1164^{+0.0028}_{-0.0026} \\ \alpha_0(2\,\text{GeV}) &= 0.59 \pm 0.03 \end{aligned}$ 

• NNLO+ $\frac{1}{Q}$  JADE and OPAL event shape moments analysis (no Broadenings),

[Gehrmann, Jaquier, Luisoni '10]

$$\begin{aligned} \alpha_s(M_Z) &= 0.1153 \pm 0.0017_{exp} \pm 0.0023_{th} \\ \alpha_0(2 \, \text{GeV}) &= 0.51 \pm 0.01_{exp} \pm 0.04_{th} \end{aligned}$$









Universität Zürich<sup>\*\*\*</sup>

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

## Conclusions

• Computation of the two loop soft corrections to the Thrust distribution

- Analytic calculation of the non-logarithmic part
- Determination of the constant term  $C_2$  and the logarithmic coefficient  $G_{3,1}$
- N<sup>2</sup>LL resummation using RG evolution and matching to NNLO
  - Logarithmic agreement with SCET-based results up to subleading terms
  - New implementation of the *R*-matching scheme and numerical fit of the  $\mathscr{O}(\alpha_s^3)$  constant term  $C_3$

## Perspectives

- Study of hadronisation corrections and fit of the strong coupling
- Study of general features of final state resummation at NNLL and extension to other jet observables



| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

$$\begin{split} f_1(\lambda) &= -\frac{A^{(1)}}{\beta_0 \lambda} [(1-2\lambda)\log(1-2\lambda)-2(1-\lambda)\log(1-\lambda)] \\ f_2(\lambda) &= -\frac{A^{(2)}}{\beta_0^2} [2\log(1-\lambda)-\log(1-2\lambda)] + 2\frac{B^{(1)}}{\beta_0}\log(1-\lambda) \\ &\quad -\frac{A^{(1)}\beta_1}{\beta_0^3} [\log(1-2\lambda) + \frac{1}{2}\log^2(1-2\lambda) - \log(1-\lambda)(2+\log(1-\lambda))] \\ &\quad -2\frac{A^{(1)}\beta_1}{\beta_0}\log\frac{1-\lambda}{1-2\lambda} \end{split}$$

$$\begin{split} f_{3}(\lambda) &= \frac{2c_{\delta}^{(1)}}{\beta_{0}} \frac{\lambda}{1-2\lambda} + \frac{2c_{j}^{(1)}}{\beta_{0}} \frac{\lambda}{1-\lambda} - \frac{2B^{(2)}}{\beta_{0}^{2}} \frac{\lambda}{1-\lambda} - \frac{A^{(3)}}{\beta_{0}^{3}} \frac{\lambda^{2}}{(1-\lambda)(1-2\lambda)} \\ &- \frac{2A^{(2)}\gamma_{E}}{\beta_{0}^{2}} \frac{\lambda}{(1-\lambda)(1-2\lambda)} + \frac{A^{(2)}\beta_{1}}{\beta_{0}^{4}} \frac{3\lambda^{2} + (1-\lambda)\log(1-2\lambda) - 2(1-2\lambda)\log(1-\lambda)}{(1-\lambda)(1-2\lambda)} \\ &- 2\frac{B^{(1)}}{\beta_{0}}\gamma_{E} \frac{\lambda}{1-\lambda} + \frac{2B^{(1)}\beta_{1}}{\beta_{0}^{3}} \frac{\lambda + \log(1-\lambda)}{1-\lambda} \\ &+ \frac{A^{(1)}}{\beta_{0}} \frac{1}{(1-\lambda)(1-2\lambda)} \left[ -\gamma_{E}^{2}\lambda(3-2\lambda) + \frac{2\gamma_{E}\beta_{1}}{\beta_{0}^{2}} \left[ \lambda + (1-\lambda)\log(1-2\lambda) \\ &- (1-2\lambda)\log(1-\lambda) \right] + \frac{\beta_{2}}{\beta_{0}^{3}} \left[ -\lambda^{2} + (1-3\lambda+2\lambda^{2})(2\log(1-\lambda) - \log(1-2\lambda)) \right] \\ &- \frac{A^{(1)}\beta_{1}^{2}}{\beta_{0}^{5}} \left[ \frac{1-\lambda}{2(1-\lambda)(1-2\lambda)} \log(1-2\lambda)[4\lambda + \log(1-2\lambda)] \\ &- \frac{2}{2(1-\lambda)(1-2\lambda)} \left[ \lambda^{2} - (1-2\lambda)\log(1-\lambda)(2\lambda + \log(1-\lambda)) \right] \right] \end{split}$$



LCWS11

Granada, Sep 28 2011

| Introduction | Tools and ingredients | NNLL resummation | Power Corrections | $\alpha_s$ from event shapes: other recent fits | Conclusions and Outlook | Back-up Slides |
|--------------|-----------------------|------------------|-------------------|-------------------------------------------------|-------------------------|----------------|
| 0            | 0000                  | 00               | 0                 |                                                 |                         |                |
| 000          |                       | 0                | 0                 |                                                 |                         |                |
| 00           |                       | 0                | 0                 |                                                 |                         |                |
| 000          |                       |                  |                   |                                                 |                         |                |

• *Single* cut: single soft emission

$$\mathscr{J}_{cut}(\tau) \rightarrow \delta^{(+)}(q^2) (\delta(\tau Q - q \cdot n) \Theta(q \cdot \bar{n} - q \cdot n) + \delta(\tau Q - q \cdot \bar{n}) \Theta(q \cdot n - q \cdot \bar{n}))$$

• Double cut: double soft emission

$$\begin{split} \mathscr{J}_{cut}(\tau) &\rightarrow \delta^{(+)}(q^2)\delta^{(+)}(k^2) \\ \times \left(\delta(\tau Q - q \cdot n - k \cdot n)\Theta(q \cdot \bar{n} - q \cdot n)\Theta(k \cdot \bar{n} - k \cdot n) \right. \\ &+ \delta(\tau Q - q \cdot \bar{n} - k \cdot \bar{n})\Theta(q \cdot n - q \cdot \bar{n})\Theta(k \cdot n - k \cdot \bar{n}) \\ &+ \delta(\tau Q - q \cdot n - k \cdot \bar{n})\Theta(q \cdot \bar{n} - q \cdot n)\Theta(k \cdot n - k \cdot \bar{n}) \\ &+ \delta(\tau Q - k \cdot n - q \cdot \bar{n})\Theta(k \cdot \bar{n} - k \cdot n)\Theta(q \cdot n - q \cdot \bar{n}) \end{split}$$

- All phase-space integrals evaluated with analytic techniques
  - numerical cross-check using sector decomposition: SecDec+BASES/VEGAS [Carter, Heinrich '11]

