R&D in New Cavity Shapes

Fumio Furuta Cornell University

Introduction

New cavity shapes for high gradient

New Cavity Shape with low Hp/Eacc

from J.Sekutowicz lecture Note

$$E_{acc} = \frac{H_{CR}^{RF}}{H_{pk}/E_{acc}}$$

TTF: TESLA shape

Reentrant (RE): Cornell Univ.

Low Loss(LL): JLAB/DESY

LL/ICHIRO: KEK

shape	TTF	LL/ICHIRO	RE
Iris Diameter [mm]	70	60	60
Ep/Eacc	1.98	2.36	2.28
Hp/Eacc [Oe/MV/m]	41.5	36.1	35.4
$G*R/Q[\Omega^2]$	30840	37970	41208
Eacc[MV/m]	42.0	48.5	49.4

ILC Baseline/Alternative cavity shapes

ILC main linac cavity		BCD: Baseline	ACD: Alternative
Cavity Shape		TESLA	Low loss Reentrant
Acceptance Performance	Eacc[MV/m]	35	40
	Qo	0.80E10	0.80E10
Operation Performance	Eacc [MV/m]	31.5	36
	Qo	1.0E10	1.0E10

VT results of new shapes

Proof of high gradient w/ single cells (1)

Proof of high gradient w/ single cells (2)

Statistics for ICHIRO singles

Eacc[MV/m]

Full end group single

Current best recipe for ICHIRO

CBP+CP+AN+EP(80μm)+EP(20μm)+flash EP(3μm) +Ethanol rinsing+Wiping+HPR+Bake

Q-slope issue remains.

▶R&D for post EP cleaning

▶new design, DDC.

Eacc vs. Year, single cell

Status of new shape singles

KEK had successfully demonstrated >50MV/m with new shape cavities of Low loss, ICHIRO, and Reentrant.

Cornell had achieved 59MV/m with Reentrant.

These singles were processed by CBP and horizontal EP.

Reentrant cavities were also done by high temp anneal at Cornell before CBP.

ICHIRO 9-cell #7 (w/ HOM) at KEK/Jlab

14Dec2010

Re-entrant 9-cell (no HOM) at Cornell

IHEP-01 LG Low loss 9-cell at IHEP/KEK

IHEP-01 Large Grain Low Loss 9-cell Cavity (without HOM couplers)

1st Vertical Test, July 1, 2010

CBP (190 μm), BCP (110 μm), Annealing (750°C, 3 h), Pretuning (94 %), Ultrasonic (Micro-90 2%, 50°C, 3 h), BCP (20 μm), Ultrasonic (UPW), Low Pressure Rinsing @ IHEP Ultrasonic (Liquinox 2%, 43°C, 3 h), HPR (8.5 h), Baking (105°C, 48 h), VT @ KEK

LG ICHIRO 9-cell #11(w/ HOM) at KEK

2Jul2011

Status of new shape 9-cells

ICHIRO#7 achieved 40MV/m with Qo of 8e9 in collaboration with Jlab and KEK so far.

Reentrant 9-cell achieved 27~30MV/m with vertical EP.

Demonstration of 50MV/m is current top priority for new shape 9-cells.

Large grain LL and ICHIRO cavities are processed and tested. These cavities are processed by BCP, not EP. So far 20~27MV/m are achieved.

What are the issues of new shapes?

At the moment, available number of new shape multi cell cavities are very small.

ICHIRO = 3(FG)+2(LG), RE=1(FG), Low loss=1(LG)

So fabrication error like a defect in EBW seam might be big issue. But we have a tool to fix them, like CBP, local grinding, laser re-melting, etc..

It is expectable to improve performance more by them.

Other limitations like FE, Q-slope, quench, etc.. are same with baseline cavities. So feedbacks from them are also important.

What are the issues of new shapes?

New shape cavities has also another challenges with challenge of 50MV/m.

- >ICHIRO #7 + MO seal.
- >Reentrant + vertical EP.
- >LG Low loss/ICHIRO + BCP.

For 50MV/m with new shapes, it is better to separate additional challenges and use most reliable ways.

Future plan

ICHIRO activities at Jlab will continue. ICHIRO#7 and another LG ICHIRO 9-cell are planed to be processed and tested at Jlab in future.

Cornell has a plan to try horizontal EP on Reentrant 9-cell. Cornell also has 3-cell Reentrant cavity. This cavity will be also processed and tested as a step of multi cell.

R&D plan of Cornell SRF group after 2012

- 1) New shapes for high voltage cavities.
 - *we are involved in reentrant shapes, ICHIRO.
- 2) OST quench detection and other SRF test techniques.
 - *we have been involved in several techniques, e.g. T-maps.
- 3) Field emission detection.
 - *we have started a simulation effort for field emission, dark current, and radiation background.
- 4) New SRF materials.
 - *we are already producing Nb3Sn.
- 5) Nb/Cu Cavities.
 - *already investigating spun cavities from explosion bonded copper on niobium.
- 6) New production techneques: spinning and/or hydroforming.
 - *we are involved in spinning already.
- 7) Cut-cavity analysis of single cells.
 - *we have done much of this, e.g. in Alexander Romanenko's PhD.

Summary

New shapes have successfully demonstrated high gradient of 50MV/m with single cells.

Demonstration of 50MV/m with multi-cell is top priority for new shapes. So far ICHIRO 9-cell achieved ACD requirement of 40MV/m with Qo of 8.0e9 at VT.

After demonstration of 50MV/m wit multi cell, high yield is also necessary. Feedbacks from baseline cavities are important.

We already have pieces for 50MV/m and high yield. New shapes, reliable vendors, procedures and facilities. 50MV/m with 9-cell will be in hand soon.