# Hadronic backgrounds at CLIC from two photon processes

#### Kirtimaan Mohan

Indian Institute of Science

September 28, 2011

LCWS 11 Granada, Spain

In collaboration with R. M. Godbole, A. Grau, G. Pancheri, Y. N. Srivastava

- High energy photons can fluctuate into fermion pairs or even to bound states
- These quantum fluctuations mean that a high energy photon behaves like a hadron and has a structure
- This means that there are processes of the type ( $\gamma\gamma \rightarrow hadrons$ )
- The "clean" environment of these colliders threatened by (ee → γγ → hadrons) due high density of particle bunches required for high luminosity.(M. Drees, R. Godbole Phys. Rev. Lett 67, 1189 1991)
- Estimating these backgrounds is important

- Backgrounds and their sources
- How to estimate these backgrounds
- Results

## Backgrounds (Bremsstrahlung)

 Backrounds to e<sup>+</sup>e<sup>-</sup> processes at linear colliders comes from bremsstrahlung processes such as



Calculating the background requires knowledge of:

- The energy spectrum of the photons at the collider
- The total photon-photon cross-section  $\sigma_{tot}(\gamma\gamma \rightarrow hadrons)$

$$n(e^-e^+ \to \gamma\gamma \to hadrons) = \int_0^1 dx_1 \int_0^1 dx_2 L_{\gamma\gamma}(x_1, x_2) \times \sigma \left[\gamma(x_1 p_1) \gamma(x_2 p_2) \to hadrons\right] (1)$$

 Luminosity function L<sub>γγ</sub> is the product of the energy spectrum of the bremsstrahlung photons from the two beams.

$$L_{\gamma\gamma}(x_1, x_2) = f_{\gamma/e}^{brem1} \times f_{\gamma/e}^{brem2} \times \text{Luminosity/bunch crossing}$$
(2)

We use the Weizsacker-Williams (EPA) approximation for bremsstrahlung photons.

$$f_{\gamma/e}(z) = \frac{\alpha_{\rm em}}{2\pi z} \left[ (1 + (1-z)^2) \ln \frac{s}{m_e^2} \right]$$
(3)

Entire kinematical range of the photon virtuality is used.

One could also incorporate anti-tagging of electrons and include effects due to photon virtuality

$$f_{\gamma/\theta}(z) = \frac{\alpha_{\rm em}}{2\pi z} \left[ (1 + (1 - z)^2) \ln \frac{P_{max}^2}{P_{min}^2} - 2(1 - z) \right], \tag{4}$$
$$P_{max}^2 = s/2 * (1 - \cos\theta_{tag})(1 - z), P_{min}^2 = m_{\theta}^2 \frac{z^2}{(1 - z)}.$$

We use the anti-tagging conditions  $\theta_{tag} = 0.025$ ,  $E_{min}^e = 0.2E_{beam}$ . 50 GeV<sup>2</sup> <  $s_{\gamma\gamma} < 0.64s_{ee}$ M. Drees and R. Godbole ZPC 59 1993

### Bremsstrahlung Spectrum

$$f_{\gamma/e}(z) = \frac{\alpha_{\rm em}}{2\pi z} \left[ (1 + (1 - z)^2) \ln \frac{s}{m_{\rm e}^2} \right]$$
(5)



Figure: Normalized bremsstrahlung spectrum at CLIC energies: 3 TeV

- However the story is not so simple there is another process through which photons can be generated: Beamstrahlung (P. Chen,T. L. Barklow, M. E. Peskin, PRD. 49, 94 3209)
- Luminosity function  $L_{\gamma\gamma}$  recieves contributions from two sources
  - Bremsstrahlung radiation of the colliding electrons
  - "Beamstrahlung" radiation from disruption of the beams as they pass through each other
- Assuming these two sources are independent of each other

$$\mathcal{L}_{\gamma\gamma}(x_1, x_2) = \left[ f_{\gamma/e}^{beam1} + f_{\gamma/e}^{brem1} \right] \times \left[ f_{\gamma/e}^{beam2} + f_{\gamma/e}^{brem2} \right] \times \text{Luminosity/bunch crossing}$$
(6)

### Beamstrahlung

 For small transverse deviations (and also neglecting interfernces from successive photon emissions) there is an analytic form of the spectra (P. Chen PRD 46,3 1992)

$$\begin{aligned} f_{\gamma/e}^{\text{beam}}(x) &= \frac{1}{\Gamma\left(\frac{1}{3}\right)} \left(\frac{2}{3\Upsilon}\right)^{\frac{1}{3}} x^{-\frac{2}{3}} (1-x)^{-\frac{1}{3}} e^{-2x/[3\Upsilon(1-x)]} \\ &\times \left\{ \frac{1-\sqrt{\frac{\gamma}{24}}}{g(x)} \left[ 1-\frac{1}{g(x)N_{\gamma}} \left(1-e^{-g(x)N_{\gamma}}\right) \right] \\ &+ \sqrt{\frac{\gamma}{24}} \left[ 1-\frac{1}{N_{\gamma}} \left(1-e^{-N_{\gamma}}\right) \right] \right\} \end{aligned}$$
(7)

The analytic spectrum is controlled by the beamstrahlung parameter

$$\Upsilon = \frac{5r_e^2 E_e N}{6\alpha\sigma_z(\sigma_x + \sigma_y)m_e},\tag{8}$$

- $\blacktriangleright$  The validity of this analytic expression characterized by the beamstrahlung parameter  $\Upsilon < 5$
- ► For CLIC energies and beam parameters (CLIC Report 2008):

$$\begin{split} \sigma_x &= 0.45 \times 10^{-4} \text{mm} \\ \sigma_y &= 0.9 \times 10^{-5} \text{mm} \\ \sigma_z &= 0.03 \text{mm} \\ \text{Number of electrons/positrons per bunch } \textit{N} = 4 \times 10^9 \\ \Upsilon &= 6.5 \end{split}$$

 Hence we also use spectrum generated by simulations GUINEAPIG
 M. Battaglia, B. Dalena
 http://clic-beam-beam.web.cern.ch/clic-beam-beam
 Also see talk by Tony Hartin

## Beamstrahlung Spectra



Figure: Comparison of normalized spectra of simulation with analytic spectrum for beamstrahlung photons

- We now look at the second input to calculating the hadronic background :  $\sigma_{tot}(\gamma\gamma \rightarrow hadrons)$
- Data for this process exists in the energy range of a few GeV to 160 GeV
- Most consistent and widest range of data comes from L3 and OPAL experiments at LEP.
- In order to calculate the background we need to know the cross-section upto 3 TeV
- We try to fit the data from these experiments to forms inspired from S-Matrix Theory.
- We also use various model predictions for  $\gamma\gamma$  cross-sections.
- We compare the results obtained when using theoretical model predictions with fits to the experimental data.



Figure: Data and fits ( $\sigma_{tot}^{\gamma\gamma} = Bs^{-\eta} + As^{\epsilon} + Cs^{\epsilon_1}$ ),( $s = s/1 \, GeV$ )

- Fit1: All parameters A, B and  $\epsilon$  are left free
- Fit2: 
  earlier is fixed to 0.093, as measured in pp and p
  p
  p
  p
  collisions, the other
  parameters are left free
- Fit3: ε is fixed to 0.093, but a second pomeron term of the form Cs<sup>ε1</sup><sub>γγ</sub> was added with ε<sub>1</sub> = 0.418 and the normalization (C) fitted.
- ▶  $\eta_1 = 0.358$ ,  $\epsilon = 0.418$  (PDG), for  $pp/\gamma p$ : inspired from S-matrix theory (Donnachie, Landshoff PLB 437 (1998) 408).

Table: Results of fits to the OPAL and L3 total  $\gamma\gamma$  cross sections, of the form  $Bs^{-\eta} + As^{\epsilon} + Cs^{\epsilon_1}$ .

| Data    | A (nb)     | <i>B</i> (nb) | <i>C</i> (nb) | $\epsilon,\epsilon_1$        | $\chi^2$ |
|---------|------------|---------------|---------------|------------------------------|----------|
| L3+OPAL | $51\pm14$  | $1132\pm158$  | -             | $\epsilon = 0.240 \pm 0.032$ | 4.0      |
| L3+OPAL | $187\pm4$  | $310\pm91$    | _             | $\epsilon = 0.093$ fixed     | 26       |
| L3+OPAL | $103\pm18$ | $934\pm156$   | $5.0\pm1.0$   | $\epsilon = 0.093$ ,fixed    |          |
|         |            |               |               | $\epsilon_1 = 0.418$ , fixed | 2.8      |

- So we have now have all the ingredients to estimate these Hadronic Backgrounds
  - Bremsstrahlung Spectrum
  - Beamstrahlung Spectrum
  - $\sigma_{tot}(\gamma\gamma \rightarrow hadrons)$
- Lets look at some estimates of the backgrounds.

### Backgrounds at CLIC (Only Bremsstrahlung Photons)



Figure: Including only bremsstrahlung , the backgrounds at CLIC as a function of  $\sqrt{s}$  , spread of predictions from models and "fit3"

## Number of events per bunch crossing



Note that despite having different high energy behaviour the event numbers from "fit1" and "fit3" dont differ too much  $\rightarrow$  maximum contribution from the low energy part

| Model | Spectrum | n <sub>brem</sub> | n <sub>beam</sub> | n <sub>bb</sub> | n <sub>tot</sub> |
|-------|----------|-------------------|-------------------|-----------------|------------------|
| Aspen | Sim      | 0.244             | 0.961             | 1.054           | 2.259            |
|       | Analytic | 0.244             | 0.172             | 0.484           | 0.900            |
| BKKS  | Sim      | 0.369             | 1.480             | 1.602           | 3.451            |
|       | Analytic | 0.369             | 0.265             | 0.735           | 1.369            |

Table: Number of events per bunch crossing (with tagging)

Table: Number of events per bunch crossing (with tagging)

| Fit used | Spectrum | n <sub>brem</sub> | n <sub>beam</sub> | n <sub>bb</sub> | n <sub>tot</sub> |
|----------|----------|-------------------|-------------------|-----------------|------------------|
| fi+1     | Sim      | 0.327             | 1.674             | 1.524           | 3.525            |
| 11(1     | Analytic | 0.327             | 0.321             | 0.712           | 1.360            |
| fit2     | Sim      | 0.342             | 1.939             | 1.643           | 3.924            |
| nto      | Analytic | 0.342             | 0.386             | 0.776           | 1.504            |

- Hadronic backgounds at CLIC about 2-5 events per bunch crossing.
- Large uncertainty from  $\sigma_{total}(\gamma\gamma \rightarrow hadrons)$
- Spread of predictions between experimental fits and theoretical models are comparable.
- Both beamstrahlung and bremsstrahlung contributions to the photon spectra of the beams need to be considered
- ► *brem* × *beam* contribution is as important as *beam* × *beam*
- The study of these backgrounds highlight the importance of the low energy part of the cross-section.
- ► Work in progress taking into account the low energy part of  $\sigma_{tot}(\gamma\gamma \rightarrow hadrons)$  more carefully.

**Backup slides** 



the beamstrahlung parameter

$$\Upsilon = \frac{5r_e^2 E_e N}{6\alpha\sigma_z(\sigma_x + \sigma_y)m_e},\tag{9}$$

classical electron radius  $r_e = \alpha/m_e = 2.818 \cdot 10^{-15}$  m, the beam energy  $E_e$ , the total number of particles in a bunch *N*, and on the r.m.s. sizes of the Gaussian beam  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_z$ . For not too large  $\Upsilon$  ( $\Upsilon \leq 5$ ), we have the following spectrum.

$$g(x) = 1 - \frac{1}{2} \left[ (1+x)\sqrt{1+\Upsilon^{\frac{2}{3}}} + 1 - x \right] (1-x)^{\frac{2}{3}}.$$
 (10)

The average number of photons radiated per electron throughout the collision is

$$N_{\gamma} = \frac{5\alpha^2 \sigma_z m_e \Upsilon}{2r_e E_e \sqrt{1 + \Upsilon^{\frac{2}{3}}}}.$$
(11)

- For the beamstrahlung contributions we use two different spectra of photons.
  - ▶ We calculate the number of events in the following way; if b1=beamstrahlung spectra of beam1, b2=beamstrahlung spectra from beam2, w1=bremsstrahlung spectra from beam1, and w2=bremsstrahlung spectra for beam2, then, we calculate the following event numbers; Including only bremsstrahlung contribution:  $n_{bream} = \mathcal{L}_{ee} \times w1 \times w2$ , Including only beamstrahlung contribution:  $n_{beam} = \mathcal{L}_{\gamma\gamma} \times b1 \times b2$ , Including beamstrahlung and bremsstrahlung:  $n_{bb} = \left(\frac{\mathcal{L}_{\gamma e} + \mathcal{L}_{e\gamma}}{2}\right) (b1 \times w2 + b2 \times w1)$ . Where,  $\mathcal{L}_{ee} = 4.3146609 \times 10^{34} m^{-2}$ ,  $\mathcal{L}_{\gamma\gamma} = 2.9678426 \times 10^{34} m^{-2}$ ,  $\mathcal{L}_{\gamma e} = 3.37706 \times 10^{34} m^{-2}$ ,  $\mathcal{L}_{e\gamma} = 3.3754 \times 10^{34} m^{-2}$ , are the integrated

luminosities per bunch crossing.