SUSY-Yukawa Sum Rule at the LHC and the ILC

Maxim Perelstein, LEPP/Cornell U.

September 27, 2011 LCWS 11 Workshop, Granada, Spain

Blanke, Curtin, MP, 1004.5350 [hep-ph], PRD Saelim, MP, work in progress

Heart: EW Breaking Sector

Higgs: Solution to the Hierarchy Problem No Higgs: EW Symmetry Breaking Mechanism

- To prove SUSY, test its heart: solution to hierarchy problem
- Focus on the top sector largest SM Higgs coupling, must be at the weak scale (unless very finely tuned)

$$_{\overline{h}}$$
 $-\frac{3y_t^2}{8\pi^2}\Lambda^2 + A\log\Lambda + \dots$

• Why does it work:

$$\mathcal{L}_{\text{MSSM}} = y_t h \bar{t} t + y_t^2 h^2 \left(|\tilde{t}_L|^2 + |\tilde{t}_R|^2 \right) + \dots$$

The same constant - sharp prediction! Test it?

Impossible to measure the quartic at the LHC!

[Challenge: prove me wrong!]

But: $h = v + h^0 + \dots$ $rac{rac}{rac}$ cubic: $y_t^2 v h^0 |\tilde{t}|^2$

Still, (probably) impossible to measure at the LHC! [Maybe Higgsstrahlung in stop production? ILC?]

But also:
$$V_{\text{SUSY}} = y_t^2 v^2 \left(|\tilde{t}_L|^2 + |\tilde{t}_R|^2 \right)$$
 stop mass terms!

Problem: many other contributions to stop masses (both SUSY and SUSY-breaking)

$$V = (\tilde{t}_L^*, \tilde{t}_R^*) M^2 \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$$

$$M^2 = \left(\frac{m_t^2 + M_{3L}^2 + \Delta_u}{\sqrt{2}m_t \sin\beta (A_t - \mu \cot\beta)}\right)$$

$$\frac{\sqrt{2}m_t \sin\beta (A_t - \mu \cot\beta)}{m_t^2 + M_{\tilde{t}_R}^2 + \Delta_{\bar{u}}} \Big)$$

Physical observables: mass eigenstates

$$\tilde{t}_1 = \cos \theta_t \, \tilde{t}_L \, + \, \sin \theta_t \, \tilde{t}_R$$
$$\tilde{t}_2 = - \sin \theta_t \, \tilde{t}_L \, + \, \cos \theta_t \, \tilde{t}_R$$

Observables: m_{t1}, m_{t2}, θ_t

[Convention: $m_{t1} < m_{t2}$]

Express (11) matrix element in terms of eigenvalues + mixing angle:

$$m_t^2 + M_{3L}^2 + \Delta_u = m_{t1}^2 \cos^2 \theta_t + m_{t2}^2 \sin^2 \theta_t$$

$$f$$
big and unknown!

BUT, Sbottom masses have the same structure with the same M_{3L}^2 (enforced by $SU(2)_L$)

$$m_b^2 + M_{3L}^2 + \Delta_d = m_{b1}^2 \cos^2 \theta_b + m_{b2}^2 \sin^2 \theta_b$$

$$\boxed{\begin{array}{c} m_t^2 - m_b^2 = \\ -m_t^2 = \\ -m_t^2$$

$$a_{t}^{2} - m_{b}^{2} = m_{t1}^{2} \cos^{2} \theta_{t} + m_{t2}^{2} \sin^{2} \theta_{t}$$

 $-m_{b1}^{2} \cos^{2} \theta_{b} - m_{b2}^{2} \sin^{2} \theta_{b} - m_{W}^{2} \cos 2\beta$

"SUSY-Yukawa sum rule"

Dimensionless version:

$$\Upsilon = \frac{m_{t1}^2 \cos^2 \theta_t + m_{t2}^2 \sin^2 \theta_t - m_{b1}^2 \cos^2 \theta_b - m_{b2}^2 \sin^2 \theta_b}{v^2}$$

SUSY Prediction (at tree level):

$$\Upsilon_{\text{SUSY}}^{\text{tree}} = \frac{1}{v^2} \left(\hat{m}_t^2 - \hat{m}_b^2 + m_Z^2 \cos^2 \theta_W \cos 2\beta \right)$$
$$= \begin{cases} 0.39 \text{ for } \tan \beta = 1\\ 0.28 \text{ for } \tan \beta \to \infty \end{cases}$$

[Note: β dependence is $\tan^{-2}\beta$ in the large- $\tan\beta$ limit]

Allowed range outside SUSY? Consider arbitrary perturbative quartic:

$$\lambda |\tilde{t}|^2 h^2, \quad \lambda \le 16\pi^2 \quad \Longrightarrow \quad \Upsilon < 8\pi^2$$

-We can define $\Upsilon(\mu)$ in terms of running masses/mixings evaluated at scale μ

-The tree-level sum rule applies to $\,\Upsilon(\mu)\,{\rm as}\,\log{\rm as}\,\,\mu\gg M_{susy},v$

- Corrections are power-suppressed: ${\cal O}(M_{susy}^2/\mu^2)$

FIG. 2: Distribution of Υ for a SuSpect random scan of pMSSM parameter space. Scanning range was $\tan \beta \in (5, 40)$; $M_A, M_1 \in (100, 500)$ GeV; $M_2, M_3, |\mu|, M_{QL}, M_{tR}, M_{bR} \in (M_1 + 50 \text{ GeV}, 2 \text{ TeV}); |A_t|, |A_b| < 1.5 \text{ TeV}; random sign(<math>\mu$). EWSB, neutralino LSP, and experimental constraints $(m_H, \Delta \rho, b \to s\gamma, a_\mu, m_{\tilde{\chi}_1^{\pm}}$ bounds) were enforced.

- "Order-one" corrections, due to the few-% level cancellation in the tree-level sum rule

- Still, predicted range << range allowed outside SUSY
- The prediction gets sharper as more superpartner masses are measured!

Improving Theoretical Prediction of the Sum Rule with Data

[MP, Saelim, in progress]

- Measuring MSSM parameters reduces the range of possible loop corrections, leads to sharper prediction of the sum rule
- Example: assume LCC1 point*, use projected LHC and ILC measurement errors from Baltz, Battaglia, Peskin, Wizansky, hep-ph/0602187
- Scan pMSSM parameter space using Markov Chain Monte Carlo approach
- Compute Υ for each point in the scan

* - Yes, I know, it is now ruled out... It's just an example.

Results (PRELIMINARY!!!)

Pre-LHC: $\Upsilon_{th} = 0.18 \pm 0.85$ Post-LHC: $\Upsilon_{th} = 0.37 \pm 0.39$ Post-ILC: $\Upsilon_{th} = 0.42 \pm 0.19$

Measuring Stop and Sbottom Masses at the LHC [Blanke, Curtin, MP, 1004.5350]

• We study two reactions: $pp \to \tilde{g}\tilde{g}, \quad \tilde{g} \to \bar{b}\tilde{b}, \quad \tilde{b} \to b\tilde{\chi}_1^0$ $pp \to \tilde{t}\tilde{t}^*, \quad \tilde{t} \to t\tilde{\chi}_1^0$

- Both reactions are "generic": they occur in large parts of parameter space (though not guaranteed, of course)
- To simplify things, we choose the MSSM parameter point* such that both reactions (a) have branching ratios of I, and (b) have no significant SUSY backgrounds

aneta	M_1	M_2	M_3	μ	M_A	M_{Q3L}	M_{tR}	A_t		m_{t1}	m_{t2}	s_t	m_{b1}	m_{b2}	s_b	$m_{\tilde{q}}$	$m_{ ilde{m{\gamma}}_1^0}$
10	100	450	450	400	600	310.6	778.1	392.6	$\overline{}$	371	800	-0.095	341	1000	-0.011	525	$\frac{\lambda_1}{98}$

* - Yes, I know, it is now ruled out... It's just an example.

Process : $pp \to \tilde{g}\tilde{g}, \quad \tilde{g} \to \bar{b}\tilde{b}, \quad \tilde{b} \to b\tilde{\chi}_1^0$

$$\sigma(\tilde{g}\tilde{g}) = 11.6 \text{ pb} \implies \text{high rate } \checkmark$$

Final state: 4 b-jets + MET
SM Backgrounds: $Z/W + 4j$, $t\bar{t}$
Cuts (standard): 4 b-tags, plus
 $\not{E}_T > 200 \text{ GeV},$
 $p_T^b > 40 \text{ GeV}$
 $p_T^{\text{max}} > 100 \text{ GeV}$
 $|\eta^b| \le 2.5$

After cuts: $\sigma_{sig} = 480 \text{ fb}, \quad \sigma_{bg} \approx 35 \text{ fb} \implies \text{Ignore backgrounds}$

Kinematic Edge

[6 values in each event, 4 are from wrong pairings]

[cleaned up with cuts]

Theory:

$$M_{bb}^{\max} = \sqrt{\frac{(m_{\tilde{g}}^2 - m_{b1}^2)(m_{b1}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{b1}^2}} = 382.3 \text{ GeV}.$$
 (

Kinematic Edge

[6 values in each event, 4 are from wrong pairings]

Theory:

$$M_{bb}^{\max} = \sqrt{\frac{(m_{\tilde{g}}^2 - m_{b1}^2)(m_{b1}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{b1}^2}} = 382.3 \text{ GeV}.$$
 (

[cleaned up with cuts]

Measurement (10 fb-1, 14 TeV):

$$M_{bb}^{\rm max} = (395 \pm 5) \ {\rm GeV} \ \checkmark$$

×3 - systematics

MT2 and Subsystem MT2's

Theory predictions:

$$M_{T2}^{210}(0)^{\max} = \frac{\left[(m_{b1}^2 - m_{\tilde{\chi}_1^0}^2)(m_{\tilde{g}}^2 - m_{\tilde{\chi}_1^0}^2)\right]^{1/2}}{m_{\tilde{g}}} = 320.9 \text{ GeV}$$
$$M_{T2}^{220}(0)^{\max} = m_{\tilde{g}} - m_{\tilde{\chi}_1^0}^2/m_{\tilde{g}}^2 = 506.7 \text{ GeV}.$$

[Note: we did not find large- $ilde{M}$ endpoints very useful, but did not try to optimize $ilde{M}$]

Example: Subsystem MT2

Theory: 320.9 GeV

Measured: $(314 \pm 14) \text{ GeV}$

Process 2: $pp \to \tilde{t}\tilde{t}^*, \quad \tilde{t} \to t\tilde{\chi}_1^0$

$$\sigma = 2 \text{ pb}$$

Final state: 2 tops (both had.) + MET

SM Background: $Zt\bar{t}$ $\sigma = 135~{
m fb}$

No kinematic edges, single MT2 endpoint:

$$M_{T2}^{\max}(0) = \frac{M_{\tilde{t}}^2 - M_{\tilde{\chi}_1^0}^2}{M_{\tilde{\chi}_1^0}} = 336.7 \text{ GeV}$$

Measurement (100 fb-1, 14 TeV):

$$(340 \pm 4) \text{ GeV}$$

Put Everything Together:

Process I:

 $M_{bb\,\text{meas}}^{\text{max}} = (395 \pm 15) \text{ GeV},$ $M_{T2}^{210}(0)_{\text{meas}}^{\text{max}} = (314 \pm 14) \text{ GeV},$ $M_{T2}^{220}(0)_{\text{meas}}^{\text{max}} = (492 \pm 14) \text{ GeV}.$

mass	theory	median	mean	68% c.l.	95% c.l.	process
m_{b_1}	341	324	332	(316, 356)	(308, 432)	Ι
$m_{ ilde{g}}$	525	514	525	(508, 552)	(500, 634)	Ι
$m_{ ilde{\chi}_1^0}$	98	_	_	(45, 115)	(45, 179)	I + LEP
m_{t_1}	371	354	375	(356, 414)	(352, 516)	I + II

Process 2:

$$M_{T2}(0)_{\text{meas}}^{\text{max}} = (340 \pm 4) \text{ GeV}.$$

TABLE I: Mass measurements (all in GeV), assuming Gaussian edge measurement uncertainties. We imposed the lower bound $m_{\tilde{\chi}_1^0} > 45$ GeV, which generically follows from the LEP invisible Z decay width measurement [17].

If we assume that t I and b I are exactly left-handed:

$$\Upsilon'_{\text{meas}} = \frac{1}{v^2} \left(m_{t1}^2 - m_{b1}^2 \right) = 0.525^{+0.20}_{-0.15}$$

[theory prediction, with rad. cor., is 0.42]

Error Bar Inflation:

mass	theory	median	mean	68% c.l.	95% c.l.	process
m_{b_1}	341	324	332	(316, 356)	(308, 432)	Ι
$m_{ ilde{g}}$	525	514	525	(508, 552)	(500, 634)	Ι
$m_{ ilde{\chi}_1^0}$	98	_	_	(45, 15)	(45, 179)	I + LEP
m_{t_1}	371	354	375	(366, 414)	(352, 516)	I + II

TABLE I: Mass measurements (all in GeV), assuming Gaussian edge measurement uncertainties. We imposed the lower bound $m_{\tilde{\chi}^0_1} > 45$ GeV, which generically follows from the LEP invisible Z decay width measurement [17].

masses

Due to the SU(2) cancellation in the sum rule:

 $\Upsilon'_{\text{meas}} = \frac{1}{v^2} \left(m_{t1}^2 - m_{b1}^2 \right) = 0.525^{+0.20}_{-0.15}$

40% error on the

sum rule

 $(371)^2 - (341)^2 \sim (170)^2$

Precise mass measurements are key, ILC can do it!

LHC Stop Mixing Angle Measurement?

[MP, Weiler, 0811.1024; Shelton, 0811.0569]

- Top decays before hadronization
- -> polarization is observable!
 - Top polarization is same as stop handedness if $\chi_1^0 = \tilde{B}, \tilde{W}^3$, or opposite if $\chi_1^0 = \tilde{H}_u^0, \tilde{H}_d^0$
 - Top polarization determined by the "effective mixing angle"

$$\int_{\text{eff}}^{j} = \frac{y_t N_{j4} \cos \theta_t - \frac{2\sqrt{2}}{3} g' N_{j1} \sin \theta_t}{\sqrt{2} \left(\frac{g}{2} N_{j2} + \frac{g'}{6} N_{j1}\right) \cos \theta_t + y_t N_{j4} \sin \theta_t}$$

Knowledge of neutralino mixing angles is required to get θ_t

Figure 7: Leptonic, hadronic, and combined for ward-backward asymmetries, as a function of the angle θ_{eff} . The error bars indicate statistical errors for 10 fb⁻¹ integrated luminosity.

[Parton-level analysis; ISR complicates things further - Plehn et al, 1006.2833]

			0 14		
Friday, September 23, 2011	-0.50	Ţ			

Stop Mixing from Gluino Decays?

FIG. 22: Distribution of m_{bb} in the decay chain (III)₁. The (dashed) line is for $\tilde{t}_1 = \tilde{t}_L(\tilde{t}_R)$, and 400 GeV< $m_{tb} <$ 470 GeV. We use the mass spectrum in the sample point A1 in Table I, and the normalization is arbitrary.

[Hisano, Kawagoe, Nojiri, hep-ph/0304214]

- **Direct** measurement of θ_t gluino is a pure gaugino!
- Complicated final state, combinatoric issues
- More difficult if gluino is heavy
- More detailed, quantitative analysis is required to assess the LHC potential for this measurement

Sbottom Mixing Measurement at the LHC

Mixing Angle Measurements at the ILC

[Bartl, Eberl, Kraml, Majerotto, Porod, Sopczak, hep-ph/9701336]

R

Friday, September 23, 2011

11

Conclusions

- Proving SUSY-Yukawa Sum Rule experimentally would provide a striking confirmation of SUSY and its role in electroweak symmetry breaking
- Unfortunately, this will be quite challenging at the LHC:
 - Error inflation requires precise mass measurements
 - Stop mixing angle measurement is hard, sbottom even harder
- ILC excels at this a quantitative study would be very interesting!

Backup Slides

Stop Mass vs. Naturalness in the MSSM

[MP, Spethmann, hep-ph/0702038]

 $\theta_t = \pi/4, \quad \tan\beta = 10$

Note: in the pMSSM ("without prejudice"), other squarks and gluinos can be >5 TeV without much fine-tuning