Model-independent WIMP Characterization Using ISR

Christoph Bartels

University of Hamburg, DESY

LCWS11 Granada, September 27, 2011

Dark Matter at the ILC?

- WIMP properties:
 - Electrically neutral
 - Stable ⇒ new conserved quantum number
 - Cold, i.e. non-relativistic
 - Cross sections $\mathcal{O}(100 \mathrm{fb})$
 - Massive *M* ~ 100 GeV

- Well known initial state ⇒ precision physics
- Longitudinal polarized beams: $P_{e^-} = 80\%$ and $P_{e^+} \ge 30\%$
- Machine Parameters: RDR, SB-2009 impact beam energy spectrum

Direct WIMP Production in e^+e^- -Collisions

Model-independent WIMP pair production (Birkedal et al.):

- Annihilation cross section determined by relic DM abundance
- Annihilation and production cross sections related by detailed balancing
- $\Rightarrow e^+e^- \rightarrow \chi \chi$, invisible in collider experiment, use ISR

• Search for high p_T photons balancing invisible WIMP system

• Model dependent interpretation (SUSY) \rightarrow O. Kittel tomorrow

Dominant SM Background Process

• Neutrino pair production $e^+e^- \rightarrow \nu \nu \gamma$

- Irreducible
- Large production cross section
- Polarization dependent
- \Rightarrow Precise event reconstruction, excellent $\delta P/P$
- Other: Multi-photon, radiative Bhabha scattering

Analysis Strategy I

- Observables: Photon energy E_{γ} (and polar angle Θ_{γ})
- Measure from ISR spectrum Cross sections, Coupling structure, Mass, Partial wave

Threshold energy ⇔ missing mass, threshold behaviour ⇔ partial wave
Achievable precision, influence of polarization measurement?

Analysis Strategy II

- Large WIMP parameter space
 - Select irreducible $e^+e^- \rightarrow \nu\nu\gamma$ background
 - Reweight $\nu\nu\gamma$ events with $\frac{\sigma(\chi\chi\gamma)}{\sigma(\nu\nu\gamma)}$
- Large backgrounds: $S/B \approx \mathcal{O}(10^{-3})$
 - Include photon in matrix element
 - Full detector simulation
 - Photon reconstruction
- Precise background prediction required
 - Parametrization of independent background sample
 - Generate signal prediction from parametrization

Photon Cluster Fracturing

- Reconstruction algorithm tends to split electromagnetic clusters
- Photons: no tracking information, fracturing not recovered
- Merge photon candidates with cone based method
- Optimize cone opening angle w.r.t. purity and efficiency
- Small amount of fracturing remaining at high photon energies

Photon Cluster Fracturing

- Reconstruction algorithm tends to split electromagnetic clusters
- Photons: no tracking information, fracturing not recovered
- Merge photon candidates with cone based method
- Optimize cone opening angle w.r.t. purity and efficiency
- Small amount of fracturing remaining at high photon energies

Photon Cluster Fracturing

- Reconstruction algorithm tends to split electromagnetic clusters
- Photons: no tracking information, fracturing not recovered
- Merge photon candidates with cone based method
- Optimize cone opening angle w.r.t. purity and efficiency
- Small amount of fracturing remaining at high photon energies

Event Selection

Selection of single high p_T photons

- Signal definition:
 - 10 GeV $< E_{\gamma} <$ 220 GeV, $|\cos \Theta_{\gamma}| <$ 0.98
 - Low energy ISR, massless Z final state
 - Tracking and calorimetric acceptance
- Maximal exclusive visible energy
 - *E_{vis} E_γ* < 20 GeV
 - Reject multi-photon final states
 - Reject hadronic and leptonic final states
- Tag electrons in forward calorimeters
 - Reduce abundant Bhabha background
- Veto high p_T tracks
 - p_T < 3 GeV</p>
 - Reject hadronic and leptonic final states

Selection Efficiencies

- Selection efficiency of ννγ background energy dependent
- Reduced efficiency due to remaining cluster fracturing at high E_γ
- Signal photon spectrum mass dependent
- P-wave WIMP spectrum peaked sharper at low E_γ

Selection Efficiencies

- Selection efficiency of ννγ background energy dependent
- Reduced efficiency due to remaining cluster fracturing at high E_γ
- Signal photon spectrum mass dependent
- P-wave WIMP spectrum peaked sharper at low E_γ
- WIMP selection efficiency mass dependent $\epsilon > 90\%$

Cross Section and Coupling Structure

$$\sigma = \mathcal{F}(\sigma_{RR}, \sigma_{LL}, \sigma_{RL}, \sigma_{LR}; P_{e^-}, P_{e^+})$$

Fully polarized cross sections ⇔ Coupling structure of WIMP interactions

- Study three scenarios:
 - "Equal": $\sigma_{RR} = \sigma_{LL} = \sigma_{RL} = \sigma_{LR}$
 - "Helicity": $\sigma_{RL} = \sigma_{LR}$
 - "Anti-SM": σ_{RL}
- Requires four measurements with polarized beams:

• 200
$$ext{fb}^{-1}$$
 with $(+|P_{e^-}|; -|P_{e^+}|)$

- 50 fb⁻¹ with $(+|P_{e^-}|;+|P_{e^+}|)$,
- 50 fb⁻¹ with $(-|P_{e^-}|; -|P_{e^+}|)$.
- Assume $\sigma_0 = 100$ fb throughout

Systematic Uncertainties

- δP/P:
 - Cross sections, coupling structure σ_{R,L}
 - 0.25% to 0.1%
- $\delta \mathcal{L}/\mathcal{L}$:
 - Cross sections, coupling structure σ_{R,L}
 - 0.01%
- $\delta\epsilon/\epsilon$:
 - Cross sections, coupling structure σ_{R,L}
 - 2.0%
 - Calibrate with radiative Z-return
- Beam energy spectrum
 - Cross sections, Partial wave, Mass
 - Estimate from signal spectra of SB2009 and RDR parameter sets
- Beam energy scale
 - Mass
 - Calibrate with radiative Z-return

Coupling structure

"Equal" scenario, $P_{e^-} = +0.8, P_{e^+} = -0.3, L = 50 \text{ fb}^{-1}, \sigma_{P_{e^-}, P_{e^+}} = 100 \text{ fb}$

Parameter	value	$\delta\sigma$ [fb]
$\delta P/P$	0.25%	5.7
$\delta\epsilon/\epsilon$	1.73%	1.7
$\delta {\cal L} / {\cal L}$	0.01%	0.01
Total		5.9

Coupling Structure

• Scenarios distinguishable with $\chi^2/ndf > 10 \ (p < 10^{-8})$

• $|P_{e^+}| = 0.3$, $\delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 20$ fb to 40 fb

Coupling Structure

- Scenarios distinguishable with $\chi^2/ndf > 10 \ (p < 10^{-8})$
- $|P_{e^+}| = 0.3$, $\delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 20$ fb to 40 fb
- $|P_{e^+}| = 0.6$, $\delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 10$ fb to 30 fb

Coupling Structure

• Scenarios distinguishable with $\chi^2/ndf > 10 \ (p < 10^{-8})$

•
$$|P_{e^+}| = 0.3, \, \delta P/P = 0.25\%$$
: $\Delta \sigma_{\{R,L\}}$ = 20 fb to 40 fb

- $|P_{e^+}| = 0.6, \ \delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 10$ fb to 30 fb
- $|P_{e^+}| = 0.6$, $\delta P/P = 0.10\%$: $\Delta \sigma_{\{R,L\}} = 7$ fb to 20 fb
- Combine measurements: $\Delta \sigma_0 / \sigma_0 = 2\%$ to 5%

Partial Wave Determination

• $\mathcal{L} = 500 \text{ fb}^{-1}$, "Helicity" scenario

- Test template s- and p-wave spectra against data spectrum
- χ^2_{min} indicates partial wave

Partial Wave Determination

• $\mathcal{L} = 500 \text{ fb}^{-1}$, "Helicity" scenario

- Test template s- and p-wave spectra against data spectrum
- χ^2_{min} indicates partial wave
- Partial wave determination requires polarized beams

Mass Measurement

- $\mathcal{L} = 500 \text{ fb}^{-1}$, p-wave WIMPs, $\sigma_0 = 100 \text{ fb}$
- Relative errors mass dependent: $\Delta M/M = 0.5\%$ to 2.5%
- Scenario dependent increase in precision for polarized beams
- Systematic errors: Luminosity spectrum, beam energy scale

Mass Measurement

- $\mathcal{L} = 500 \text{ fb}^{-1}$, p-wave WIMPs, $\sigma_0 = 100 \text{ fb}$
- Relative errors mass dependent: $\Delta M/M = 0.5\%$ to 2.5%
- Scenario dependent increase in precision for polarized beams
- Systematic errors: Luminosity spectrum, beam energy scale

Conclusion

- Model independent WIMP search by detection of high p_T photons
- Structure of studied coupling scenarios distinguishable
- Unpolarized cross section σ_0 determined to 2% to 5%
- Dominant uncertainty: Polarization measurement
- Partial wave can be determined with polarized beams
- Masses determined to $\leq 2.5\%$
- Dominant uncertainty: Beam energy spectrum
- Increased precision on Polarization measurement → factor two reduction of systematic errors
- Study of e.g. SUSY scenarios where only $\tilde{\chi}^{\rm 0}_1$ accessible (see O. Kittel tomorrow)