A Study of Heavy Higgs Pair Production at 3 TeV

Marco Battaglia, Frederik Bogert, Arnaud Ferrari, Johan Relefors, Sarah Zalusky

(UCSC/CERN and Uppsala U.)

LCWS2011 Granada, Spain, September 27, 2011 Consider two scenarios with heavy H⁺ and A⁰ at 3 TeV CLIC for the CDR

Scenario 1) (<u>CDR H Benchmark</u>) MSSM model with non-unified gaugino masses M₁=780 GeV, M₂=940 GeV, M₃=540 GeV $m_0 = 303 \text{ GeV}, A_0 = -750 \text{ GeV},$ $\tan \beta = 24, \mu > 0$ $M_{A} = 902.6 \text{ GeV}$ $M_{_{\rm H}} = 902.4 \, {\rm GeV}$ $M_{H_{+}} = 906.3 \text{ GeV}$

Scenario 2) (<u>CDR χ Benchmark</u>) MSSM model $m_{1/2}$ =966 GeV, m_0 = 800 GeV, $A_0 = 0$, tan $\beta = 51$, $\mu < 0$ $M_{\Delta} = 742.8 \text{ GeV}$ $M_{_{\rm H}} = 742.0 \, {\rm GeV}$ $M_{H_{+}} = 747.6 \text{ GeV}$

Determining Heavy Higgs Mass and Widths at CLIC: Accuracy Requirements from DM connection (with A Arbey and N Mahmoudi)

Assess required accuracy on M_A and Γ_A by studying their contribution to uncertainty on extracting $\Omega_{\chi}h^2$ in large tan β scenarios; 16-parameter pMSSM scans using SuperIso Relic and cross-check with Micromegas;

Determining Heavy Higgs Masses and Widths at CLIC: Accuracy Requirements from DM connection (with A Arbey and N Mahmoudi)

Event Generation, Simulation and Reconstruction

Signal generation with PYTHIA 6.215+ISASUGRA 7.67,

Full simulation with MOKKA using CLIC_ILD CDR detector model, Centralised GRID production for CLIC CDR (thanks to JJ Blaising, S Poss);

Reconstruction with FASTJet jet clustering, b-tagging based on ZVTOP vars and port of DELPHI PUFITC kinematic fitter to Marlin;

Process	σ	Generator
	(fb)	
$H^0 A^0$	0.7 / 0.4	ISASUGRA 7.69+
		PYTHIA 6.215
H^+H^-	1.6/ 1.1	ISASUGRA 7.69+
		PYTHIA 6.215
Inclusive	84.9/77.1	ISASUGRA 7.69+
SUSY		PYTHIA 6.215
W^+W^-	728.2	PYTHIA 6.215
Z^0Z^0	54.8	PYTHIA 6.215
$t \overline{t}$	30.2	PYTHIA 6.215
$b\overline{b}b\overline{b}$	5.8	WHIZARD
$W^+W^-Z^0$	32.8	CompHEP+
		PYTHIA 6.215
$Z^{0}Z^{0}Z^{0}$	0.5	CompHEP+
		PYTHIA 6.215

$e^+e^- \ \rightarrow \ H^0A^0 \ \rightarrow \ bbbb$

Based on analyses of MB, Hooberman & Kelley, PRD 78 (2008) 015021 and MB and P Ferrari, CERN-LCD-Note-2010-006.

H⁰A⁰ Signal Event Selection: b Tagging

Explicit b-tagging based on topological vertex reconstruction with ZVTOP-ZVRES;

b-tagging optimise for high efficiency by performing secondary particle search in jets with no reco secondary vertices;

b-tag probability computed per jet using boosted decision tree strategy in TMVA package and then combined for di-jets and event.

Higgs Mass Reconstruction: Kinematic Fit

10

beamstrahlung, to improve di-jet mass resolution (finite detector resolution, particle flow confusion, jet clustering confusion and s.l. B decays (+22% $\Delta E_{iet}/E_{iet}$)

Model mass as convolution of BW(natural width Γ) and Gaussian (detector resolution σ_{M}), after kinematic fit Gaussian resolution improves by ~45% and accuracy on fitted mass by ~30%.

Higgs Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain

Higgs Mass Reconstruction $\gamma\gamma \rightarrow$ hadron Background

Use semi-inclusive jet clustering: anti-kt algorithm of FastJet (implemented as Marlin processor) requiring 4 jets with $E_{jet} > 150$ GeV to avoid incorporating background hadrons into "physics" jets, rate of low energy jets can be used to monitor background;

Semi-inclusive jet clustering mitigates impact of $\gamma \gamma \rightarrow$ hadrons on the width and central value of the di-jet invariant mass. Kinematic fit also helps reducing contribution of $\gamma \gamma$ hadrons to jet energy.

Study effect of $\gamma\gamma$ bkg for 10ns time stamping with Loose, Std and Tight PFO selection

A⁰ Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain, anti-kt semi-exclusive jet clustering

Higgs Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain + $\gamma\gamma$

A⁰ Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain, anti-kt semi-exclusive jet clustering with PFO Std selection in 10 ns

$e^+e^- \ \rightarrow \ H^+H^- \ \rightarrow \ tbtb$

Start from analysis of H⁺H⁻ for CERN-2004-005 CLIC Physics Report later extended and published as Coniavitis & Ferrari, PRD 75 (2007) 015004

Top Reconstruction and Tagging

Two alternative reconstruction strategies:

- force event into 4-jet and look for two jets with largest mass (require mass of one or both to be compatible with M_{top});

- reconstruct t \rightarrow b W \rightarrow b qq through 6 jet reconstruction (W b, W b, b b)

Jet sub-structure for Top tagging

Due to gluon radiation jet invariant mass not an effective observable to reject b jets, while jet structure is. Discriminate top "jets" from b from substructure of particle flow in jets from 4-jet reconstruction, rather than by exclusive 6- or 8-jet clustering;

Technique already developed at LHC experiments (top tagging, Higgs analysis): Iterative jet de-clustering using FastJet anti-kt algorithm to obtain a sub-jet decomposition matching the expected numer of partons

Jet sub-structure for Top tagging

Compare performance of Jet sub-structure tagging to 6-jet reconstruction for top efficiency and b quark mis-identification using generator level H⁺H⁻ events;

Jet sub-structure offers factor ~ 10 b quark rejection:

Strategy for CDR analysis: 4-jet clustering with FastJet anti-kt algorithm + top tagging using jet mass and jet sub-structure.

0.04 0.13

H⁺ Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain, anti-kt semi-exclusive jet clustering

H⁺ Mass and Width Reconstruction: Kinematic Fit with Equal Mass Constrain, anti-kt semi-exclusive jet clustering with PFO Std selection in 10 ns

