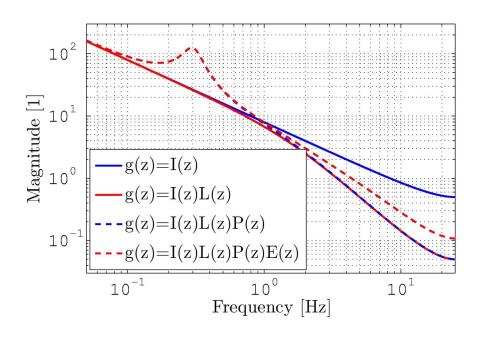


Ground-motion optimised orbit feedback design for CLIC

Jürgen Pfingstner

27th of September 2011

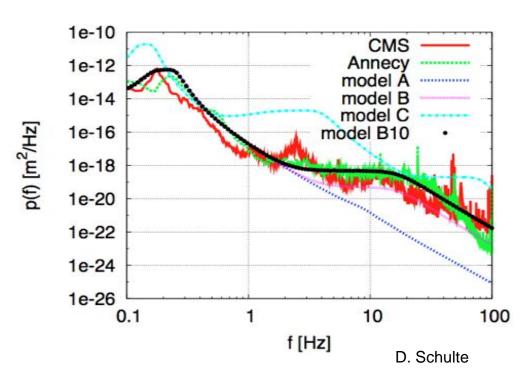
Content



- The problem of ground motion and countermeasures
- 2. Orbit feedback design
 - 1. System description
 - Decoupling
 - Time-dependent feedback design
 - 4. Spatial feedback design
- 3. Results

1. The problem of ground motion and counter-measures

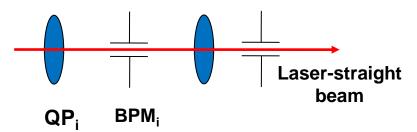
Ground motion



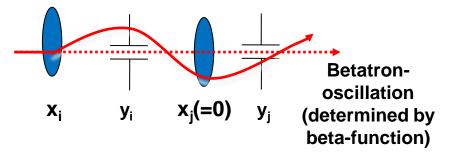
- Ground motion is a stochastic process
- Description via the 2D-PSD (power spectral density) in frequency and wave length
- Characteristics of the 2D-PSD:
 - Diffusive motion (ATL law)
 - Microseismic peak
 - Cultural noise
- Out of many measurements the models A, B, B10 und C created

Problems due to ground motion

- Ground motion misaligns the quadrupole magnets (QPs) of CLIC
- This excites the beam to oscillations
 - 1.) Perfectly aligned accelerator

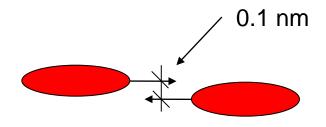


2.) One misaligned QP

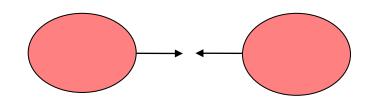


Two Problems due to ground motion

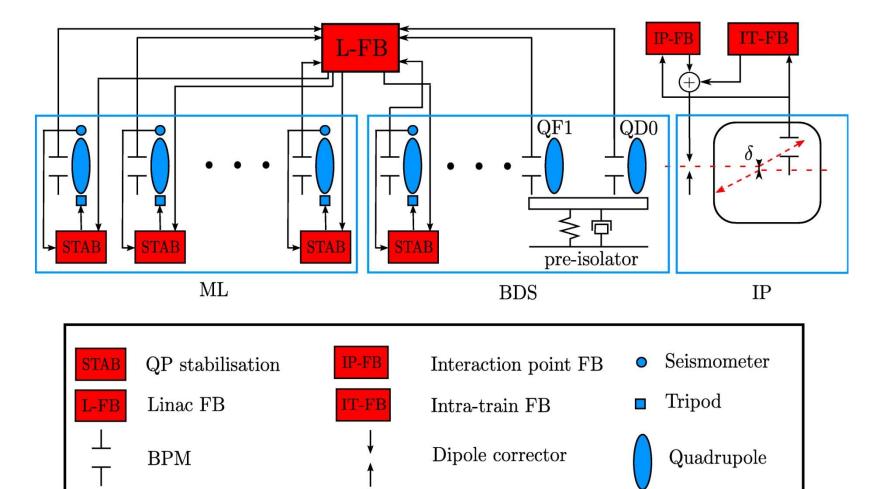
1.) Beam-beam offset



2.) Beam size growth



Counter-measures

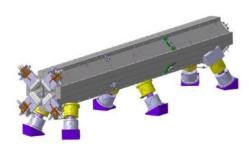


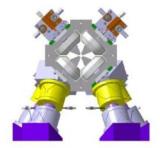
Introduction to the orbit feedback

Purpose:

Reduction of beam oscillations in the main linac and BDS of CLIC

- Sensors: Beam position monitors (BPMs)
- Actuators: tripods

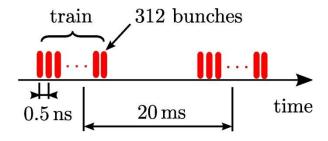




K. Artoos

Limitations:

⇒ Sampling rate limited to 50Hz (beam structure), controller only efficient >1-4 Hz



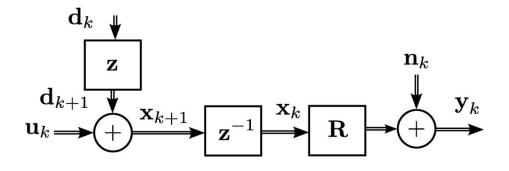
⇒ Bode's sensitivity integral (for the system in this work)

$$\int_0^\infty \log |S(e^{j\omega T_d})| \, d\omega = 0$$

2. Orbit feedback design (Linac feedback)

2.1 System description

Accelerator system



k ... Time index

 d_k ... Ground motion

 u_k ... Settings of the actuators

 x_k ... Position of the QPs

Z ... Unit-shift operator of theZ-transform

R ... Orbit response matrix

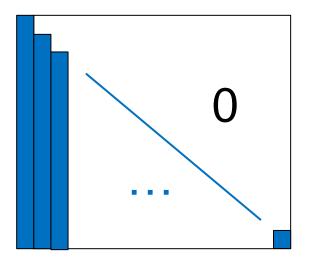
y_k ... Measurements

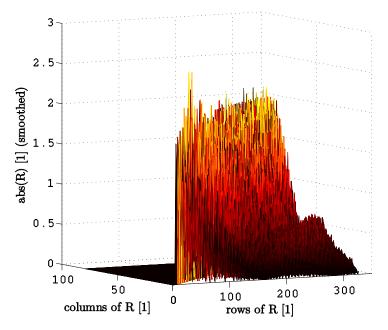
n_k ... Measurement noise

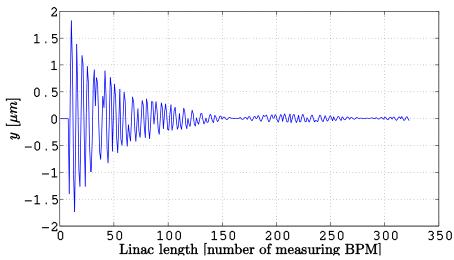
- Large, discrete, linear
 MIMO-System: 2104 in- and 2122 outputs
- System is controllable and observable
- Simple dynamic structure (no internal back coupling): FIR system (finite impulse response)

The matrix **R**

- The ith column corresponds to the measured beam motion in the linac, caused by a misalignment of the ith QP.
- The motion is determined by the lattice design of the linac an the beam properties.
- **R** is a triangular matrix. The elements close to the main diagonal have the largest values.







2.2 Decoupling

Principle of decoupling

- Accelerator system is very large => Simplifications necessary
- Possibility: Simplification via decoupling of the in- and outputs
- Decoupling can be achieved with the singular value decomposition (SVD)
 of the matrix R

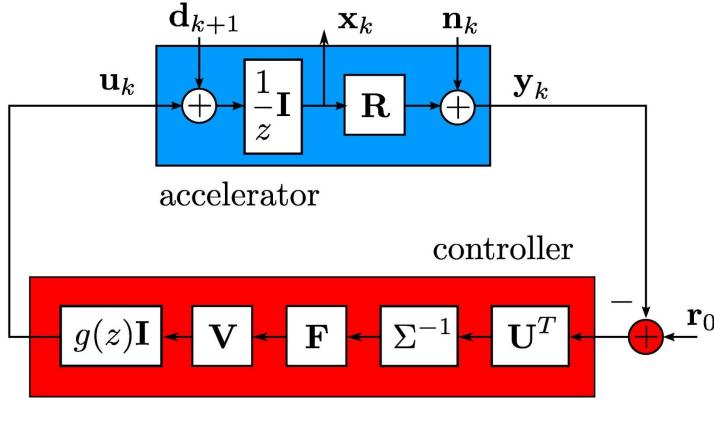
$$R = U\Sigma V^T$$
 $\Sigma = \text{diag}(s_i)$
 $VV^T = I$ $UU^T = I$

- U and V are orthonormal matrices, and the s_i are the singular values of R
- If the system is pre-multiplied with V and post-multiplied with U^T , the combined system is diagonal and hence decoupled.

$$\mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T z^{-1} \mathbf{I} \mathbf{V} = z^{-1} \mathbf{\Sigma}$$

For the accelerator system, the decoupling achieved for all frequencies!!!

Structure of the control loop



r₀ ... Reference trajectory

$$R^{-1} = V \Sigma^{-1} U^T$$

2.3 Time-dependent feedback design

Control engineering basics

Definitions:

```
H(z) ... Accelerator transfer function C(z) ... Controller transfer function T_d ... Sampling time H(z=e^{j\omega T_d}) ... frequency response of the transfer function H(z) O(e^{j\omega T_d})=H(e^{j\omega T_d})C(e^{j\omega T_d}) ... open loop frequency response f_c ... cut-through frequency; frequency for which |O(e^{j\omega T_d})|=1 \varphi_M=2\pi-\arg\{O(e^{j2\pi f_c T_d})\} ... phase margin
```

• Nyquist's theorem (simplified version for the current application => open loop stable system with only one pole on the unit circle):

The closed loop system of the assumed form is stable

$$\Leftrightarrow \qquad \varphi_M > 0$$

Design of g(z)

The filter g(z) is used by all decoupled channels and is designed with the loop-shaping method:

$$g(z) = I(z)L(z)P(z)E(z)$$

- Integrator: base element of the controller
- Motivated physically: ATL-law
- If g(z)=I(z) and $f_i=1$

=> Dead-beat controller

L(z)

- Low pass to demagnify high frequencies
- Improvement of the controller behaviour for measurement noise and high frequent ground motion
- Design based on a continuous low pass which is transformed to a discrete system

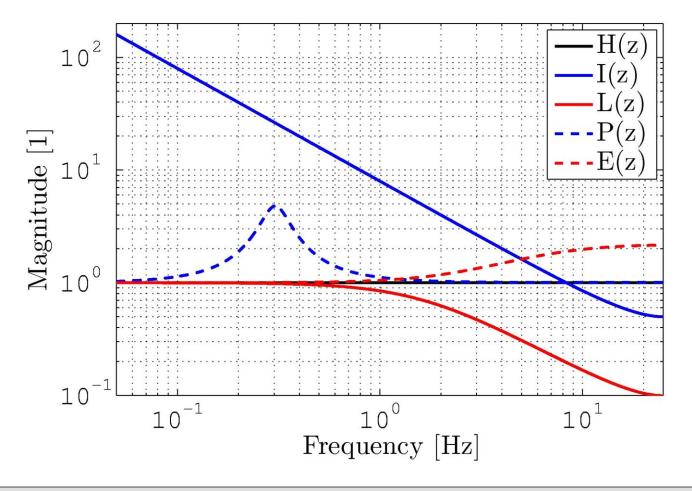
P(z)

- Amplification around 0.3 Hz
- QP- and "final doublet"-stabilisation have different frequency responses
- Mismatch has to be counteracted by a better correction of the L-FB around 0.3 Hz

E(z)

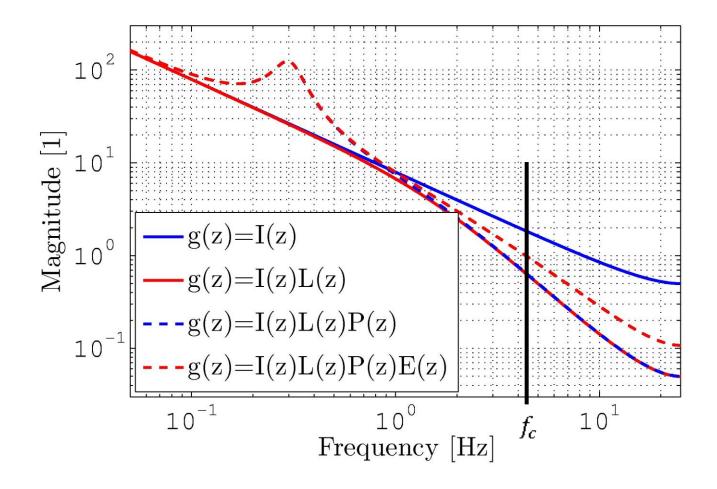
- Phase margin, due to I(z), L(z) and P(z) insufficient.
- Phase lift element: Phase margin is lifted at the cut-through frequency $f_c = 4.4$ Hz to 36.3°

Magnitude of the individual frequency responses

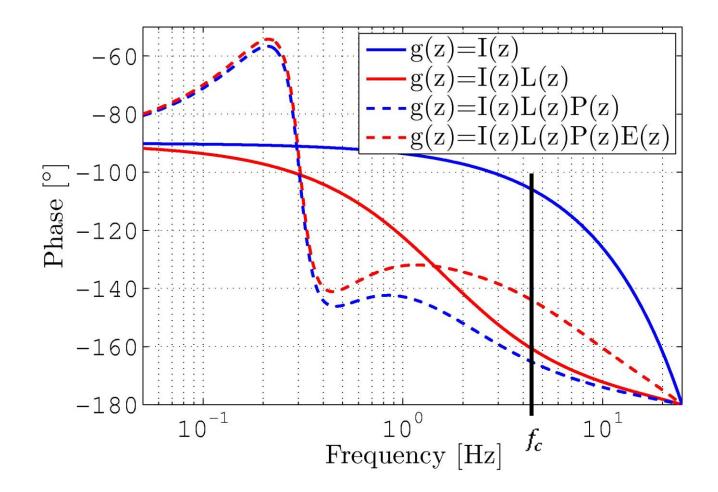


 $H(z)=z^{-1}$ is the transfer function of the accelerator if $s_i=1$.

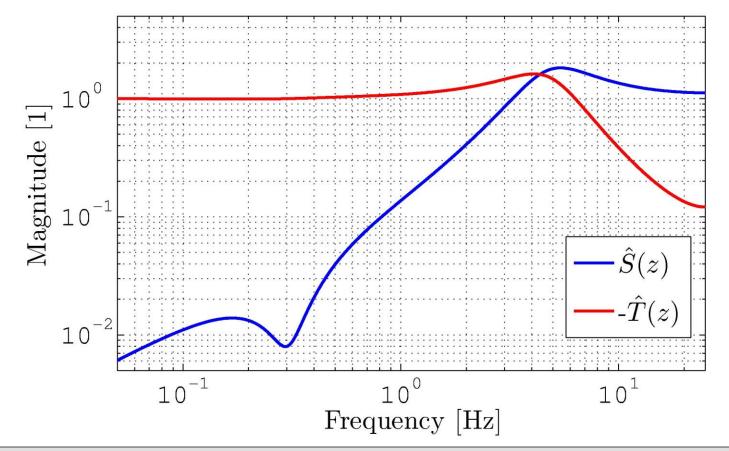
Magnitude of the open control loop (for $f_i=1$)



Phase of the open control loop (for $f_i=1$)



Magnitude of the sensitivity and noise frequency response of S(z) and -T(z) of the closed control loop (for f=1)



2.1 Spatial feedback design

Calculation of the parameters f_i

- Complete controller of the ith decoupled control loop has the form $g(z)s_i^{-1}f_i$
- Idea: f_i is chosen such that the output signal y[k,i] is minimise
- PSD of *y[k,i]*

$$Y(\omega,i) = \left|z\widehat{H}\left(e^{j\omega T_d}\right)\widehat{S}\left(e^{j\omega T_d}\right)\right|^2 P(\omega,i) + \left|\widehat{T}\left(e^{j\omega T_d}\right)\right|^2 N(\omega,i)$$
 $z\widehat{H}\left(e^{j\omega T_d}\right)\widehat{S}\left(e^{j\omega T_d}\right)$... Controller frequency response to ground motion $P(\omega,i)$ PSD of the ground motion $-\widehat{T}\left(e^{j\omega T_d}\right)$ Controller frequency response to BPM noise $N(\omega,i)$ PSD of the PBM noise

- $P(\omega, i)$ and $N(\omega, i)$ can be determined analytically or numerically.
- Minimisation performed in the frequency domain (Parseval's Theorem)

$$\min_{f_i} \|y(k,i,f_i)\|_{l^2} = \int_{-\infty}^{+\infty} Y(\omega,f_i) d\omega$$

Luminosity optimisation

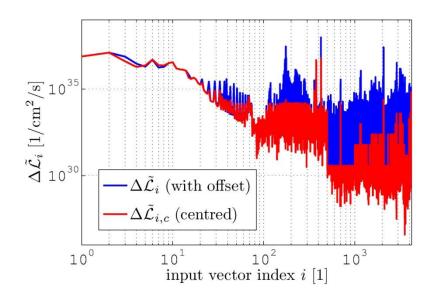
- Result can be improved by using a different target function
- Idea: Minimise a signal prop. to the luminosity loss (and not the beam oscillations)
- Two components of the lumi. loss
 - 1. Beam size growth

$$\propto Y(\omega, i)$$

2. Beam-beam offset

$$\propto \left|S_{IP}(e^{j\omega T_d})\right|^2 Y(\omega,i)$$

 Signals are weighted with their relevance for the luminosity loss

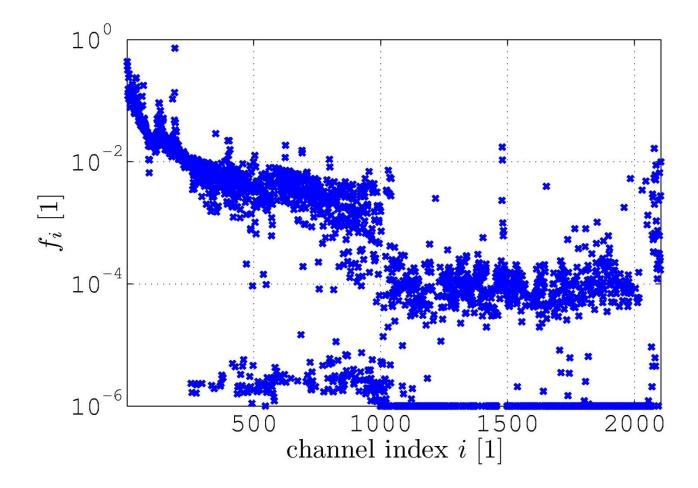


 $S_{IP}(e^{j\omega T_d})$... ground motion frequency response of the IP-FB

• Luminosity optimised minimisation problem

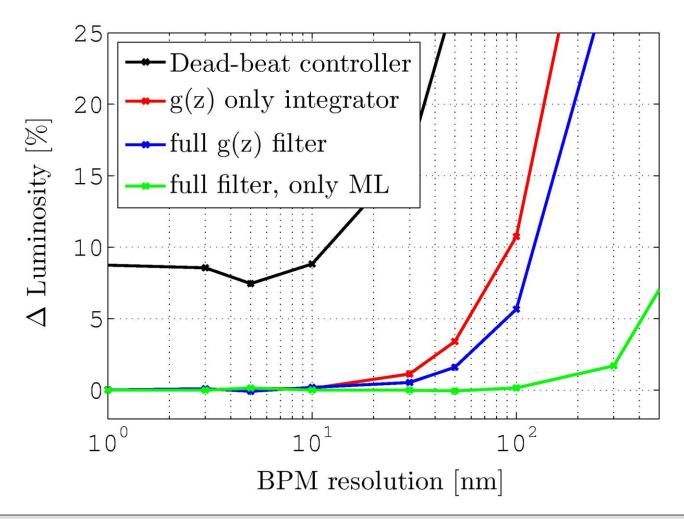
$$\min_{f_i} \int_{-\infty}^{+\infty} \left[\frac{\mathcal{L}_{i,c}}{\mathcal{L}_i} Y(\omega, i f_i) + \frac{\mathcal{L}_i - \mathcal{L}_{i,c}}{\mathcal{L}_i} \left| S_{IP}(e^{j\omega T_d}) \right|^2 Y(i\omega, f_i) \right] d\omega$$

Calculated parameters f_i



3. Results

Influence of the BPM resolution



Advantages of the new design method

- 1. The method can easily be applied to other accelerators.
- 2. Models of ground motion and BPM noise can be incorporated in the design.
- 3. Different target parameters can be optimised: luminosity, beam oscillations, ...
- 4. By the choice of g(z), the user has the possibility to employ expert knowledge.
- 5. The user is relieved from the tedious task of designing each individual decoupled loop (2104 in the case of CLIC).
- 6. The semi-automatic procedure reduces the design time drastically.
- 7. Since the controller is base on the SVD decoupling, it stays clear and important insights are not lost.

Future work

- Further robustness analysis
 - => problem: complete system is very large

Thank you for your attention!