Possibility to detect ground motion at ATF2

Y. Renier

CERN

LCWS11

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

ATF2

ATF2 Ground Motion

Detection of the Ground Motion Effects

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

ATF2

ATF2 Ground Motion

Detection of the Ground Motion Effects

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction

ATF2 : ILC & CLIC Final Focus Demonstration

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

ATF2 Project

Y. Renier

ATF2

ATF2 Ground

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the Ground Motion Effects

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

・ロト・日本・日本・日本・日本・日本

ATF2 Ground Motion Measurements¹

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

Power Spectral Density property

$$A^2 = \int_{f=0}^{\infty} p(f) \,\mathrm{d}f \tag{1}$$

¹made by B. Bolzon

ATF2 Ground Motion Measurements¹ Correlation of ATF2 ground motion for different distances

Coherence definition

$$C(f) = 1 - \frac{p(f, L)}{2 \times p(f)}$$
(2)

¹made by B. Bolzon

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

ower Spectral Density

Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Detection of the Ground Motion Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Simulation

Conditions

- ATF2 nominal lattice.
- Elements misaligned initially (RMS=100µm).
- Trajectory is then steered.
- Ground Motion (GM) model based on measurements.
- Elements are displaced by the amount of relative motion compared with the 1st element.
- Incoming beam jitter (6 Hz, 100 pulses).
- BPM and sensor noise included.
- Limited number of sensors (Guralp Seismometers).

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Algorithm Initialization

- Compute the matrices of the effects of element displacements on BPM readings.
- Find the elements with the higher effects and select them to have GM sensor.
- Put also a sensor on the first and last element.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Algorithm

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance.
- Subtract induced beam displ. from BPM meas.
- Remove incoming beam jitter from BPM meas.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Algorithm

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance.
- Subtract induced beam displ. from BPM meas.
- Remove incoming beam jitter from BPM meas.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Algorithm

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance.
- Subtract induced beam displ. from BPM meas.
- Remove incoming beam jitter from BPM meas.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Transfer Matrices

Linear case $XY = TM \times P_{inj}$

(X_1)	١	$(R_{11}(BPM_1) \cdots)$	$R_{16}(BPM_1)$	
$\begin{array}{c} \vdots \\ X_n \\ Y_1 \end{array}$	=	$\begin{array}{c} \vdots \\ R_{11}(BPM_n) & \cdots \\ R_{31}(BPM_1) & \cdots \end{array}$	R ₁₆ (BPM _n) R ₃₆ (BPM ₁)	$\left \times \left(\begin{array}{c} X \\ X' \\ Y \\ Y \end{array} \right) \right $
$\left(\begin{array}{c} \vdots \\ Y_n \end{array}\right)$		$\begin{bmatrix} & \vdots \\ & B_{31}(BPM_n) & \cdots \end{bmatrix}$	R ₃₆ (BPM _n) /	$\left(\begin{array}{c} \mathbf{Y}'\\ \frac{dE}{E}\end{array}\right)_{inj}$

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

 $2^{nd} \text{ order case}$ $XY = TM \times P_{inj} + TM2 \times \{P_{inj}, P_{inj}\}$ $X_1 = R_{11}X + \dots + R_{16}\frac{dE}{E} + T_{111}XX + \dots + T_{166}\frac{dE}{E}\frac{dE}{E}$

・ロト・日本・モート ヨー うへで

Incoming Beam Jitter Determination

Principle

- Remove mean BPM measurements.
- Subtract GM induced beam displ. from BPM meas.
- Each pulse, fit the 5 parameters at injection (P_{ini}). Merit function:

$$XY_{BPM} - \langle XY_{BPM} \rangle - XY_{GM} - TM imes P_{inj} - TM2 imes \{P_{inj}, P_{inj}\}$$

Problem

Works great with ideal lattice, not anymore with misalignments. Due to non-linear effects in sextupoles.

ATF2 Project

Y Renier

Jitter determination

Sextupole-beam offsets determination

Characterization

TM2 matrices are computed with ideal lattice (beam goes through center of sextupoles). Using R(sext \rightarrow BPM) and T(sext \rightarrow BPM) :

$$X_{BPM} = R_{11}X_{sext} + \dots + R_{16}\frac{dE}{E} + T_{111}X_{sext}^2 + T_{166}\frac{dE^2}{E}$$

If we add a constant X_0 to X_{sext} , the \tilde{X} variation is :

$$\tilde{X}_{BPM} = R_{11}X_0 + T_{111}X_0^2 + 2T_{111}X_0X_{sext} + ... + T_{116}X_0\frac{dE}{E}$$

New cross terms appear ! dominating ones :

$$\begin{array}{l} \bullet \quad \frac{d\tilde{X}_{BPM}}{X_{sext}} \simeq 2T_{111} \times X_0 \quad \frac{d\tilde{X}_{BPM}}{Y_{sext}} \simeq 2T_{133} \times Y_0 \\ \bullet \quad \frac{d\tilde{Y}_{BPM}}{X_{sext}} \simeq 2T_{313} \times Y_0 \quad \frac{d\tilde{Y}_{BPM}}{Y_{sext}} \simeq 2T_{313} \times X_0 \end{array}$$

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation

Jitter determination

Sextupole-beam offsets

Injected Beam Offsets Results

Conclusion and Prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Sextupole-beam offsets determination

Determination

Considering only the dominant terms, for 1 pulse the effects of beam misalignments in the sextupoles on BPM readings are :

Solving that equation gives the sextupole-beam offsets. The positions in the sextupoles are determined using the reconstructed parameters at injection.

Y Renier

Injected Beam Offsets

Characterization

As for sextupole displacements, non-zero mean injected beam parameters induce new terms in motion equations. Using $R(inj \rightarrow BPM)$ and $T(inj \rightarrow BPM)$:

$$\begin{split} \tilde{X}_{BPM} = R_{11}X_0 + T_{111}X_0^2 &+ 2T_{111}X_0X_{inj} + \ldots + T_{116}X_0\frac{dE}{E} \\ &+ 2T_{121}X_0'X_{inj} + \ldots + T_{126}X_0'\frac{dE}{E} \\ &\vdots \\ &+ 2T_{161}\frac{dE}{E}X_{inj} + \ldots + T_{166}\frac{dE}{E}X_{inj}\frac{dE}{E} \end{split}$$

That equation is solved finding $X_0 \cdots \frac{dE}{E_0}$ using the injected beam parameters previously computed.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Beam Jitter Effects Correction Results Principle

- Remove predicted GM effect from BPM readings.
- Remove injection beam jitter.
- Remove non-linear effects.
- Compute injection beam jitter again.
- Look at the RMS of the residuals at each BPM.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Beam Jitter Effects Correction Results Results

- Only cavity BPMs are precise enough (0.1 μ m).
- Residuals are lower subtracting GM effects.
- Works from 15 sensors.
- Sextupole-beam offsets determined at 10s µm level.
- Higher residuals in FF from errors on jitter.

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Ratio of residual over expected GM effect on BPM readings (MQF5BFF s=71m)

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Reconstructed incoming parameters

ATF2 Project

Y. Renier

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

ATF2

ATF2 Ground Motion

Detection of the Ground Motion Effects

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusion & Prospects

Conclusion

- Beam jitter subtraction is critical.
- With 15 sensors, GM effect is measurable.
- Non-linearities might be used to determine sextupole displacements.

Prospects

- Errors on magnet fields not considered yet.
- 15 sensors already bought, experimental test.
- Feed forward implementation (in CLIC) is under study. (J. Pfingstner).

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

ATF2

ATF2 Ground Motion

Detection of the Ground Motion Effects

Conclusion and Prospects

Backup Slides

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

・ロト・日本・日本・日本・日本・日本

ATF2 Ground Motion Model Parameters Fit¹

Model

- ► Wave Propagation ⇒ close enough elements move together.
- 3 Waves with adjusted amplitude, frequency, velocity and width.
- Good agreement with measurements once tunned.

Parameter table

$$p(f) = \sum_{i=1}^{3} \frac{a_i}{1 + [d_i(\frac{f - f_i}{f_i})^2]^4} \quad (3)$$
$$C(f, L) = J_0\left(\frac{2\pi fL}{v}\right) \quad (4)$$

f1	[Hz]		0.2
a1	[m**2/Hz]		1.0 E-13
d1	[1]		1.1
v1	[m/s]		1 000
f2	[Hz]	1	2.9
a2	[m**2/Hz]	1	6.0 E-15
d2	[1]		3.6
v2	[m/s]	1	550
£3	[Hz]	1	10.4
a3	[m**2/Hz]		2.6 E-17
d3	[1]		2.0
v3	[m/s]	1	250

ATF2 Project

Y. Renier

ATF2

ATF2 Ground Motion

Power Spectral Density Coherence GM Sensors

Detection of the GM Effects

Simulation Jitter determination Sextupole-beam offsets Injected Beam Offsets Results

Conclusion and Prospects

¹made by B. Bolzon