Tolerances for ATF3 Final Doublet and swapping studies

Hector Garcia Morales^{1,2}, Eduardo Marin Lacoma^{1,2}, Rogelio Tomas Garcia²

> ¹Universitat Politècnica de Catalunya, Barcelona ²CERN, Geneve

Outline

- Introduction
- 2 Impact of the multipoles in the ATF2 lattices
- 3 FD tolerances
- Performance with the new FD
- **6** Swapping the quadrupoles
 - Sensitivity
 - Magnet quality
 - Swap proposals
 - Swap.1 Option
 - Swap.2 Option
 - Swapping results
- 6 Increasing β_x^*
- Tuning
 - Knobs
 - Results
- 8 Conclusions

ATF2 lattices

Project	$\sigma_y^* [\text{nm}]$	$\beta_y^*[\text{mm}]$	L*[m]	L^*/eta_y^*	ξ_y
ATF2 Nominal	37	0.1	1.0	10000	19000
ILC	5.7	0.4	3.5	8750	15000
ATF2 Ultra-Low β^*	23	0.025	1.0	40000	76000
CLIC	1	0.068	3.5	51000	63000

- ATF2 Nominal lattice is the scale-down version of the ILC-Final Focus System lattice.
- ATF2 Ultra-low β^* is a proposal to reduce β_y^* a factor 4 of the Nominal design.

Multipolar errors

- Extraction kickers.
- Bendings.
- Quadrupoles: Sextupolar and octupolar. Until order 9 in the FD.
- Sextupoles: 3rd-9th order.

FD multipolar components

 $\beta_x = 4$ mm.

QF1 skew dodecapolar comp. at r = 0.01m $dkrs = 2.3 \cdot 10^{-4}$

QD0 skew sextupolar comp. at r = 0.01m

$$dkrs = 1.76 \cdot 10^{-4}$$

- The measured multipoles of QF1/QD0 are well above the tolerances for the ATF2 Ultra-low lattice.
- For the ATF2 Ultra-low β^* is required to replace the Final Doublet.
- A new final doublet will help to reach smaller beam sizes and to keep

Final doublet tolerances for the ATF2 Ultra low beta*

- We consider only the UL lattice because is more sensitive to multipolar components.
- The tolerances are evaluated assuming an error-free lattice.
- Each normal and skew components are increased until $2\%\Delta\sigma_y$.
- The most restrictive tolerances from QD0 and QF1 are considered.

Tolerances for QD0FF and QF1FF at a $r_a = 0.02$ m

Multipole	Sextupolar $[10^{-4}]$		Octupolar $[10^{-4}]$	
Component	Normal	Skew	Normal	Skew
m QF1/QD0	0.83	0.109	2.61	0.304

Multipole	Decapolar $[10^{-4}]$		Dodecapolar $[10^{-4}]$	
Component	Normal	Skew	Normal	Skew
m QF1/QD0	3.04	0.542	8.11	1.28

- Skew tolerances are more restrictive than the normal tolerances.
- More relaxed tolerances are found for higher orders.
- We see that the tolerances are tight but not impossible.

Impact of the multipoles in the ATF2 lattices

- It is not possible to achieve very small beams due to the magnet imperfections.
- The effect of the multipoles is notable at order 2 and at order 5.

200

• For the ATF2 Nominal lattice with the new FD the calculated spot sizes are:

$$\sigma_y^*(RMS) = 45.5\,\mathrm{nm} \qquad \qquad \sigma_y^*(SHI) = 41.0\,\mathrm{nm}$$

• For the ATF2 Ultra-low lattice with the new FD:

The 2^{nd} (sextupolar component) and 3^{rd} (octupolar component) orders are the most relevant contributors to the observed $\Delta \sigma_{\nu}^*$.

• To spot the most sensitive location to the presence of skew sextupolar and octupolar component

• To sort the quadrupoles according to their skew sextupolar and octupolar component

• The quadrupoles are distributed according only to their skew sextupolar component.

$\begin{array}{l} SWAPPING:\\ (...\ replaced\ by\ ...)\\ QF9B \Leftrightarrow QM12\\ QF5A \Leftrightarrow QD2B\\ QF9A \Leftrightarrow QM13\\ QF9B \Leftrightarrow QF19X\\ QD4B \Leftrightarrow QM15\\ QD10A \Leftrightarrow QD10B\\ QD6 \Leftrightarrow QF17X\\ QD4A \Leftrightarrow QM11\\ QD8 \Leftrightarrow QF7 \end{array}$

¹ Comparable swapping is proposed by S.Bai

• The quadrupoles are distributed according to their skew sextupolar and skew octupolar component.

SWAPPING:

(... replaced by ...)
QF9B ⇔ QM12
QF5A ⇔ QM13
QF9A ⇔ QF19X
QF5B ⇔ QM15
QD4B ⇔ QD10B
QD10A⇔ QD10B
QD6 ⇔ QF17X
QD4A ⇔ QM11
OD8 ⇔ OD10A

	$\sigma_y^* [\mathrm{nm}]$		
Lattice	Present	Swap.1	Swap.2
ATF2 Nominal	45	39	41
ATF2 Ultra-low	44	31	35

• Swap.1

- For the ATF2 Nominal lattice σ_y^* is reduced below 40nm.
- For the ATF2 Ultra-low lattice σ_y^* is notably reduced but not sufficient.

• Swap.2

• A gain is observed for both lattices but smaller than the obtained by swap.1

- By relaxing β_x^* the impact of the multipoles is minimised.
- Two different values have been studied: $\beta_x^*=6$ mm and $\beta_x^*=8$ mm .

	$\sigma_y^* [\text{nm}]$	
ATF2 Ultra-low lattice	RMS	SHI
$\beta_x^*=6\mathrm{mm}$	27.5	25.5
$\beta_x^*=8$ mm	25.1	24.0

The tuning is based on knobs to modify orthogonally the following aberrations at the IP: < x, y >, $< p_x, y >$, $< p_x, p_y >$, η_y , η_{py} , α_x , α_y , η_x

The tuning study for the ATF2 Ultra-low lattice shows that:

ATF2 Ultra-low	% machines with $\sigma_y^*/\sigma_{y_0}^* < 20\%$		
	RMS	Shintake	
$\sigma_x^*=6\mathrm{mm}$	65	87 (30 nm)	
$\sigma_x^*=8\mathrm{mm}$	67	84 (29 nm)	

• Similar tuning performance is observed for the ATF2 Ultra-low with different β_x^* .

- For the ATF2 Nominal lattice with the new FD and swapping the quadrupoles a σ_u^* below 40m is obtained.
- Replacing the FD, is not sufficient to reach a satisfactory vertical spot size for the ATF2 Ultra-low lattice.
- Swapping the quadrupoles according to their sextupolar component benefits to both lattices.
- For the ATF2 Ultra-low β^* lattice is necessary to swap the quadrupoles and to increase β_x^* up to 6 or 8mm to reach a vertical spot size of 27.5nm and 25.1 respectively.
- The ATF2 Ultra-low tuning studies show an equivalent tuning performance between $\beta_x^*=6$ mm and 8mm. In terms of the Shintake monitor, 85% of the machines reach a final σ_y^* below $1.2 \cdot \sigma_{y_0}^*$