

Forward Tracking in the ILD Detector

Robin Glattauer LCWS11, 29.09.2011

the goal

 Standalone track search for the FTDs (Forward Tracking Disks)

The Problem

The Solution

Methods

Cellular Automaton

Kalman Filter

Hopfield Neural Network

The Cellular Automaton

The Cellular Automaton

It's about rules

state 0

Kalman Filter

KalTest + KalDet + MarlinTrk

• Quality Indicator: χ² probability

The Hopfield Neural Network

Track ↔ Neuron

Goal: the global minimum

Once more for the FTDs

And now some reality

Background

- Inner 2 disks are pixel detectors
- How many bunch crossings?
- 100 BX * hit density ≈ 900 hits / pixel disk

At the moment

- Criteria
- Analysis tools
 - Step Analyser
 - Criteria Analyser
 - True Track Analyser
 - Jet Analyser
- Adding flexibility (strategy pattern)

Thanks to

- Winfried Mitaroff
- Steve Aplin, Frank Gaede and Jan Engels
- Rudi Frühwirth
- And Jakob Lettenbichler (Belle 2)

Thank you!

Back Up

Future

staggered / tilted petals

Neural Network

Intermediate Region: TPC + FTD

Robustification (DAF, GSF)

Dependencies

- FTD drivers and gear
- Time stamps?
- Number of integrated bunchcrossings

tracks will

- Skip a layer
- Connect directly to the IP

regions

